import numpy as np from skimage import data from skimage.segmentation import felzenszwalb from skimage._shared import testing from skimage._shared.testing import (assert_greater, test_parallel, assert_equal, assert_array_equal, assert_warns, assert_no_warnings, expected_warnings) @test_parallel() def test_grey(): # very weak tests. img = np.zeros((20, 21)) img[:10, 10:] = 0.2 img[10:, :10] = 0.4 img[10:, 10:] = 0.6 seg = felzenszwalb(img, sigma=0) # we expect 4 segments: assert_equal(len(np.unique(seg)), 4) # that mostly respect the 4 regions: for i in range(4): hist = np.histogram(img[seg == i], bins=[0, 0.1, 0.3, 0.5, 1])[0] assert_greater(hist[i], 40) def test_minsize(): # single-channel: img = data.coins()[20:168, 0:128] for min_size in np.arange(10, 100, 10): segments = felzenszwalb(img, min_size=min_size, sigma=3) counts = np.bincount(segments.ravel()) # actually want to test greater or equal. assert_greater(counts.min() + 1, min_size) # multi-channel: coffee = data.coffee()[::4, ::4] for min_size in np.arange(10, 100, 10): segments = felzenszwalb(coffee, min_size=min_size, sigma=3) counts = np.bincount(segments.ravel()) # actually want to test greater or equal. assert_greater(counts.min() + 1, min_size) @testing.parametrize('channel_axis', [0, -1]) def test_3D(channel_axis): grey_img = np.zeros((10, 10)) rgb_img = np.zeros((10, 10, 3)) three_d_img = np.zeros((10, 10, 10)) rgb_img = np.moveaxis(rgb_img, -1, channel_axis) with assert_no_warnings(): felzenszwalb(grey_img, channel_axis=-1) felzenszwalb(grey_img, channel_axis=None) felzenszwalb(rgb_img, channel_axis=channel_axis) with assert_warns(RuntimeWarning): felzenszwalb(three_d_img, channel_axis=channel_axis) with testing.raises(ValueError): felzenszwalb(rgb_img, channel_axis=None) felzenszwalb(three_d_img, channel_axis=None) def test_3D_multichannel_deprecation(): rgb_img = np.zeros((10, 10, 3)) with expected_warnings(["`multichannel` is a deprecated argument"]): felzenszwalb(rgb_img, multichannel=True) with expected_warnings(["Providing the `multichannel` argument"]): felzenszwalb(rgb_img, 1, 0.8, 2, True) def test_color(): # very weak tests. img = np.zeros((20, 21, 3)) img[:10, :10, 0] = 1 img[10:, :10, 1] = 1 img[10:, 10:, 2] = 1 seg = felzenszwalb(img, sigma=0) # we expect 4 segments: assert_equal(len(np.unique(seg)), 4) assert_array_equal(seg[:10, :10], 0) assert_array_equal(seg[10:, :10], 2) assert_array_equal(seg[:10, 10:], 1) assert_array_equal(seg[10:, 10:], 3) def test_merging(): # test region merging in the post-processing step img = np.array([[0, 0.3], [0.7, 1]]) # With scale=0, only the post-processing is performed. seg = felzenszwalb(img, scale=0, sigma=0, min_size=2) # we expect 2 segments: assert_equal(len(np.unique(seg)), 2) assert_array_equal(seg[0, :], 0) assert_array_equal(seg[1, :], 1)