import numpy as np from skimage.segmentation import join_segmentations, relabel_sequential from skimage._shared import testing from skimage._shared.testing import assert_array_equal import pytest def test_join_segmentations(): s1 = np.array([[0, 0, 1, 1], [0, 2, 1, 1], [2, 2, 2, 1]]) s2 = np.array([[0, 1, 1, 0], [0, 1, 1, 0], [0, 1, 1, 1]]) # test correct join # NOTE: technically, equality to j_ref is not required, only that there # is a one-to-one mapping between j and j_ref. I don't know of an easy way # to check this (i.e. not as error-prone as the function being tested) j = join_segmentations(s1, s2) j_ref = np.array([[0, 1, 3, 2], [0, 5, 3, 2], [4, 5, 5, 3]]) assert_array_equal(j, j_ref) # test correct exception when arrays are different shapes s3 = np.array([[0, 0, 1, 1], [0, 2, 2, 1]]) with testing.raises(ValueError): join_segmentations(s1, s3) def _check_maps(ar, ar_relab, fw, inv): assert_array_equal(fw[ar], ar_relab) assert_array_equal(inv[ar_relab], ar) def test_relabel_sequential_offset1(): ar = np.array([1, 1, 5, 5, 8, 99, 42]) ar_relab, fw, inv = relabel_sequential(ar) _check_maps(ar, ar_relab, fw, inv) ar_relab_ref = np.array([1, 1, 2, 2, 3, 5, 4]) assert_array_equal(ar_relab, ar_relab_ref) fw_ref = np.zeros(100, int) fw_ref[1] = 1 fw_ref[5] = 2 fw_ref[8] = 3 fw_ref[42] = 4 fw_ref[99] = 5 assert_array_equal(fw, fw_ref) inv_ref = np.array([0, 1, 5, 8, 42, 99]) assert_array_equal(inv, inv_ref) def test_relabel_sequential_offset5(): ar = np.array([1, 1, 5, 5, 8, 99, 42]) ar_relab, fw, inv = relabel_sequential(ar, offset=5) _check_maps(ar, ar_relab, fw, inv) ar_relab_ref = np.array([5, 5, 6, 6, 7, 9, 8]) assert_array_equal(ar_relab, ar_relab_ref) fw_ref = np.zeros(100, int) fw_ref[1] = 5 fw_ref[5] = 6 fw_ref[8] = 7 fw_ref[42] = 8 fw_ref[99] = 9 assert_array_equal(fw, fw_ref) inv_ref = np.array([0, 0, 0, 0, 0, 1, 5, 8, 42, 99]) assert_array_equal(inv, inv_ref) def test_relabel_sequential_offset5_with0(): ar = np.array([1, 1, 5, 5, 8, 99, 42, 0]) ar_relab, fw, inv = relabel_sequential(ar, offset=5) _check_maps(ar, ar_relab, fw, inv) ar_relab_ref = np.array([5, 5, 6, 6, 7, 9, 8, 0]) assert_array_equal(ar_relab, ar_relab_ref) fw_ref = np.zeros(100, int) fw_ref[1] = 5 fw_ref[5] = 6 fw_ref[8] = 7 fw_ref[42] = 8 fw_ref[99] = 9 assert_array_equal(fw, fw_ref) inv_ref = np.array([0, 0, 0, 0, 0, 1, 5, 8, 42, 99]) assert_array_equal(inv, inv_ref) def test_relabel_sequential_dtype(): ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.uint8) ar_relab, fw, inv = relabel_sequential(ar, offset=5) _check_maps(ar.astype(int), ar_relab, fw, inv) ar_relab_ref = np.array([5, 5, 6, 6, 7, 9, 8, 0]) assert_array_equal(ar_relab, ar_relab_ref) fw_ref = np.zeros(100, int) fw_ref[1] = 5 fw_ref[5] = 6 fw_ref[8] = 7 fw_ref[42] = 8 fw_ref[99] = 9 assert_array_equal(fw, fw_ref) inv_ref = np.array([0, 0, 0, 0, 0, 1, 5, 8, 42, 99]) assert_array_equal(inv, inv_ref) def test_relabel_sequential_signed_overflow(): imax = np.iinfo(np.int32).max labels = np.array([0, 1, 99, 42, 42], dtype=np.int32) output, fw, inv = relabel_sequential(labels, offset=imax) reference = np.array([0, imax, imax + 2, imax + 1, imax + 1], dtype=np.uint32) assert_array_equal(output, reference) assert output.dtype == reference.dtype def test_very_large_labels(): imax = np.iinfo(np.int64).max labels = np.array([0, 1, imax, 42, 42], dtype=np.int64) output, fw, inv = relabel_sequential(labels, offset=imax) assert np.max(output) == imax + 2 @pytest.mark.parametrize('dtype', (np.byte, np.short, np.intc, int, np.longlong, np.ubyte, np.ushort, np.uintc, np.uint, np.ulonglong)) @pytest.mark.parametrize('data_already_sequential', (False, True)) def test_relabel_sequential_int_dtype_stability(data_already_sequential, dtype): if data_already_sequential: ar = np.array([1, 3, 0, 2, 5, 4], dtype=dtype) else: ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=dtype) assert all(a.dtype == dtype for a in relabel_sequential(ar)) def test_relabel_sequential_int_dtype_overflow(): ar = np.array([1, 3, 0, 2, 5, 4], dtype=np.uint8) offset = 254 ar_relab, fw, inv = relabel_sequential(ar, offset=offset) _check_maps(ar, ar_relab, fw, inv) assert all(a.dtype == np.uint16 for a in (ar_relab, fw)) assert inv.dtype == ar.dtype ar_relab_ref = np.where(ar > 0, ar.astype(int) + offset - 1, 0) assert_array_equal(ar_relab, ar_relab_ref) def test_relabel_sequential_negative_values(): ar = np.array([1, 1, 5, -5, 8, 99, 42, 0]) with pytest.raises(ValueError): relabel_sequential(ar) @pytest.mark.parametrize('offset', (0, -3)) @pytest.mark.parametrize('data_already_sequential', (False, True)) def test_relabel_sequential_nonpositive_offset(data_already_sequential, offset): if data_already_sequential: ar = np.array([1, 3, 0, 2, 5, 4]) else: ar = np.array([1, 1, 5, 5, 8, 99, 42, 0]) with pytest.raises(ValueError): relabel_sequential(ar, offset=offset) @pytest.mark.parametrize('offset', (1, 5)) @pytest.mark.parametrize('with0', (False, True)) @pytest.mark.parametrize('input_starts_at_offset', (False, True)) def test_relabel_sequential_already_sequential(offset, with0, input_starts_at_offset): if with0: ar = np.array([1, 3, 0, 2, 5, 4]) else: ar = np.array([1, 3, 2, 5, 4]) if input_starts_at_offset: ar[ar > 0] += offset - 1 ar_relab, fw, inv = relabel_sequential(ar, offset=offset) _check_maps(ar, ar_relab, fw, inv) if input_starts_at_offset: ar_relab_ref = ar else: ar_relab_ref = np.where(ar > 0, ar + offset - 1, 0) assert_array_equal(ar_relab, ar_relab_ref) def test_incorrect_input_dtype(): labels = np.array([0, 2, 2, 1, 1, 8], dtype=float) with testing.raises(TypeError): _ = relabel_sequential(labels) def test_arraymap_call(): ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.intp) relabeled, fw, inv = relabel_sequential(ar) testing.assert_array_equal(relabeled, fw(ar)) testing.assert_array_equal(ar, inv(relabeled)) def test_arraymap_len(): ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.intp) relabeled, fw, inv = relabel_sequential(ar) assert len(fw) == 100 assert len(fw) == len(np.array(fw)) assert len(inv) == 6 assert len(inv) == len(np.array(inv)) def test_arraymap_set(): ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.intp) relabeled, fw, inv = relabel_sequential(ar) fw[72] = 6 assert fw[72] == 6