import numpy as np import scipy from packaging import version from skimage._shared import testing from skimage._shared._warnings import expected_warnings from skimage._shared.testing import xfail, arch32 from skimage.segmentation import random_walker from skimage.transform import resize # older versions of scipy raise a warning with new NumPy because they use # numpy.rank() instead of arr.ndim or numpy.linalg.matrix_rank. SCIPY_RANK_WARNING = r'numpy.linalg.matrix_rank|\A\Z' PYAMG_MISSING_WARNING = r'pyamg|\A\Z' PYAMG_OR_SCIPY_WARNING = SCIPY_RANK_WARNING + '|' + PYAMG_MISSING_WARNING if version.parse(scipy.__version__) < version.parse('1.3'): NUMPY_MATRIX_WARNING = 'matrix subclass' else: NUMPY_MATRIX_WARNING = None def make_2d_syntheticdata(lx, ly=None): if ly is None: ly = lx np.random.seed(1234) data = np.zeros((lx, ly)) + 0.1 * np.random.randn(lx, ly) small_l = int(lx // 5) data[lx // 2 - small_l:lx // 2 + small_l, ly // 2 - small_l:ly // 2 + small_l] = 1 data[lx // 2 - small_l + 1:lx // 2 + small_l - 1, ly // 2 - small_l + 1:ly // 2 + small_l - 1] = ( 0.1 * np.random.randn(2 * small_l - 2, 2 * small_l - 2)) data[lx // 2 - small_l, ly // 2 - small_l // 8:ly // 2 + small_l // 8] = 0 seeds = np.zeros_like(data) seeds[lx // 5, ly // 5] = 1 seeds[lx // 2 + small_l // 4, ly // 2 - small_l // 4] = 2 return data, seeds def make_3d_syntheticdata(lx, ly=None, lz=None): if ly is None: ly = lx if lz is None: lz = lx np.random.seed(1234) data = np.zeros((lx, ly, lz)) + 0.1 * np.random.randn(lx, ly, lz) small_l = int(lx // 5) data[lx // 2 - small_l:lx // 2 + small_l, ly // 2 - small_l:ly // 2 + small_l, lz // 2 - small_l:lz // 2 + small_l] = 1 data[lx // 2 - small_l + 1:lx // 2 + small_l - 1, ly // 2 - small_l + 1:ly // 2 + small_l - 1, lz // 2 - small_l + 1:lz // 2 + small_l - 1] = 0 # make a hole hole_size = np.max([1, small_l // 8]) data[lx // 2 - small_l, ly // 2 - hole_size:ly // 2 + hole_size, lz // 2 - hole_size:lz // 2 + hole_size] = 0 seeds = np.zeros_like(data) seeds[lx // 5, ly // 5, lz // 5] = 1 seeds[lx // 2 + small_l // 4, ly // 2 - small_l // 4, lz // 2 - small_l // 4] = 2 return data, seeds @testing.parametrize('dtype', [np.float16, np.float32, np.float64]) def test_2d_bf(dtype): lx = 70 ly = 100 # have to use a smaller beta to avoid warning with lower precision input beta = 90 if dtype == np.float64 else 25 data, labels = make_2d_syntheticdata(lx, ly) data = data.astype(dtype, copy=False) with expected_warnings([NUMPY_MATRIX_WARNING]): labels_bf = random_walker(data, labels, beta=beta, mode='bf') assert (labels_bf[25:45, 40:60] == 2).all() assert data.shape == labels.shape with expected_warnings([NUMPY_MATRIX_WARNING]): full_prob_bf = random_walker(data, labels, beta=beta, mode='bf', return_full_prob=True) assert (full_prob_bf[1, 25:45, 40:60] >= full_prob_bf[0, 25:45, 40:60]).all() assert data.shape == labels.shape # Now test with more than two labels labels[55, 80] = 3 with expected_warnings([NUMPY_MATRIX_WARNING]): full_prob_bf = random_walker(data, labels, beta=beta, mode='bf', return_full_prob=True) assert (full_prob_bf[1, 25:45, 40:60] >= full_prob_bf[0, 25:45, 40:60]).all() assert len(full_prob_bf) == 3 assert data.shape == labels.shape @testing.parametrize('dtype', [np.float16, np.float32, np.float64]) def test_2d_cg(dtype): lx = 70 ly = 100 data, labels = make_2d_syntheticdata(lx, ly) data = data.astype(dtype, copy=False) with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): labels_cg = random_walker(data, labels, beta=90, mode='cg') assert (labels_cg[25:45, 40:60] == 2).all() assert data.shape == labels.shape with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): full_prob = random_walker(data, labels, beta=90, mode='cg', return_full_prob=True) assert (full_prob[1, 25:45, 40:60] >= full_prob[0, 25:45, 40:60]).all() assert data.shape == labels.shape return data, labels_cg @testing.parametrize('dtype', [np.float16, np.float32, np.float64]) def test_2d_cg_mg(dtype): lx = 70 ly = 100 data, labels = make_2d_syntheticdata(lx, ly) data = data.astype(dtype, copy=False) anticipated_warnings = [ 'scipy.sparse.sparsetools|%s' % PYAMG_OR_SCIPY_WARNING, NUMPY_MATRIX_WARNING] with expected_warnings(anticipated_warnings): labels_cg_mg = random_walker(data, labels, beta=90, mode='cg_mg') assert (labels_cg_mg[25:45, 40:60] == 2).all() assert data.shape == labels.shape with expected_warnings(anticipated_warnings): full_prob = random_walker(data, labels, beta=90, mode='cg_mg', return_full_prob=True) assert (full_prob[1, 25:45, 40:60] >= full_prob[0, 25:45, 40:60]).all() assert data.shape == labels.shape return data, labels_cg_mg @testing.parametrize('dtype', [np.float16, np.float32, np.float64]) def test_2d_cg_j(dtype): lx = 70 ly = 100 data, labels = make_2d_syntheticdata(lx, ly) data = data.astype(dtype, copy=False) with expected_warnings([NUMPY_MATRIX_WARNING]): labels_cg = random_walker(data, labels, beta=90, mode='cg_j') assert (labels_cg[25:45, 40:60] == 2).all() assert data.shape == labels.shape with expected_warnings([NUMPY_MATRIX_WARNING]): full_prob = random_walker(data, labels, beta=90, mode='cg_j', return_full_prob=True) assert (full_prob[1, 25:45, 40:60] >= full_prob[0, 25:45, 40:60]).all() assert data.shape == labels.shape def test_types(): lx = 70 ly = 100 data, labels = make_2d_syntheticdata(lx, ly) data = 255 * (data - data.min()) // (data.max() - data.min()) data = data.astype(np.uint8) with expected_warnings([PYAMG_OR_SCIPY_WARNING, NUMPY_MATRIX_WARNING]): labels_cg_mg = random_walker(data, labels, beta=90, mode='cg_mg') assert (labels_cg_mg[25:45, 40:60] == 2).all() assert data.shape == labels.shape return data, labels_cg_mg def test_reorder_labels(): lx = 70 ly = 100 data, labels = make_2d_syntheticdata(lx, ly) labels[labels == 2] = 4 with expected_warnings([NUMPY_MATRIX_WARNING]): labels_bf = random_walker(data, labels, beta=90, mode='bf') assert (labels_bf[25:45, 40:60] == 2).all() assert data.shape == labels.shape return data, labels_bf def test_2d_inactive(): lx = 70 ly = 100 data, labels = make_2d_syntheticdata(lx, ly) labels[10:20, 10:20] = -1 labels[46:50, 33:38] = -2 with expected_warnings([NUMPY_MATRIX_WARNING]): labels = random_walker(data, labels, beta=90) assert (labels.reshape((lx, ly))[25:45, 40:60] == 2).all() assert data.shape == labels.shape return data, labels def test_2d_laplacian_size(): # test case from: https://github.com/scikit-image/scikit-image/issues/5034 # The markers here were modified from the ones in the original issue to # avoid a singular matrix, but still reproduce the issue. data = np.asarray([[12823, 12787, 12710], [12883, 13425, 12067], [11934, 11929, 12309]]) markers = np.asarray([[0, -1, 2], [0, -1, 0], [1, 0, -1]]) expected_labels = np.asarray([[1, -1, 2], [1, -1, 2], [1, 1, -1]]) labels = random_walker(data, markers, beta=10) np.testing.assert_array_equal(labels, expected_labels) return data, labels @testing.parametrize('dtype', [np.float32, np.float64]) def test_3d(dtype): n = 30 lx, ly, lz = n, n, n data, labels = make_3d_syntheticdata(lx, ly, lz) data = data.astype(dtype, copy=False) with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): labels = random_walker(data, labels, mode='cg') assert (labels.reshape(data.shape)[13:17, 13:17, 13:17] == 2).all() assert data.shape == labels.shape return data, labels def test_3d_inactive(): n = 30 lx, ly, lz = n, n, n data, labels = make_3d_syntheticdata(lx, ly, lz) old_labels = np.copy(labels) labels[5:25, 26:29, 26:29] = -1 after_labels = np.copy(labels) with expected_warnings(['"cg" mode|CObject type' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): labels = random_walker(data, labels, mode='cg') assert (labels.reshape(data.shape)[13:17, 13:17, 13:17] == 2).all() assert data.shape == labels.shape return data, labels, old_labels, after_labels @testing.parametrize('channel_axis', [0, 1, -1]) @testing.parametrize('dtype', [np.float32, np.float64]) def test_multispectral_2d(dtype, channel_axis): lx, ly = 70, 100 data, labels = make_2d_syntheticdata(lx, ly) data = data.astype(dtype, copy=False) data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output data = np.moveaxis(data, -1, channel_axis) with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING, 'The probability range is outside']): multi_labels = random_walker(data, labels, mode='cg', channel_axis=channel_axis) data = np.moveaxis(data, channel_axis, -1) assert data[..., 0].shape == labels.shape with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): single_labels = random_walker(data[..., 0], labels, mode='cg') assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all() assert data[..., 0].shape == labels.shape return data, multi_labels, single_labels, labels def test_multispectral_2d_deprecated(): lx, ly = 70, 100 data, labels = make_2d_syntheticdata(lx, ly) data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output # checking for multichannel kwarg warning with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, "`multichannel` is a deprecated argument", NUMPY_MATRIX_WARNING, 'The probability range is outside']): multi_labels = random_walker(data, labels, mode='cg', multichannel=True) assert data[..., 0].shape == labels.shape # checking for positional multichannel warning with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, "Providing the `multichannel` argument", NUMPY_MATRIX_WARNING, 'The probability range is outside']): multi_labels = random_walker(data, labels, 130, 'cg', 1.e-3, True, True) assert data[..., 0].shape == labels.shape with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): single_labels = random_walker(data[..., 0], labels, mode='cg') assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all() assert data[..., 0].shape == labels.shape return data, multi_labels, single_labels, labels @testing.parametrize('dtype', [np.float32, np.float64]) def test_multispectral_3d(dtype): n = 30 lx, ly, lz = n, n, n data, labels = make_3d_syntheticdata(lx, ly, lz) data = data.astype(dtype, copy=False) data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): multi_labels = random_walker(data, labels, mode='cg', channel_axis=-1) assert data[..., 0].shape == labels.shape with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): single_labels = random_walker(data[..., 0], labels, mode='cg') assert (multi_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all() assert (single_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all() assert data[..., 0].shape == labels.shape return data, multi_labels, single_labels, labels def test_spacing_0(): n = 30 lx, ly, lz = n, n, n data, _ = make_3d_syntheticdata(lx, ly, lz) # Rescale `data` along Z axis data_aniso = np.zeros((n, n, n // 2)) for i, yz in enumerate(data): data_aniso[i, :, :] = resize(yz, (n, n // 2), mode='constant', anti_aliasing=False) # Generate new labels small_l = int(lx // 5) labels_aniso = np.zeros_like(data_aniso) labels_aniso[lx // 5, ly // 5, lz // 5] = 1 labels_aniso[lx // 2 + small_l // 4, ly // 2 - small_l // 4, lz // 4 - small_l // 8] = 2 # Test with `spacing` kwarg with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg', spacing=(1., 1., 0.5)) assert (labels_aniso[13:17, 13:17, 7:9] == 2).all() @xfail(condition=arch32, reason=('Known test failure on 32-bit platforms. See links for ' 'details: ' 'https://github.com/scikit-image/scikit-image/issues/3091 ' 'https://github.com/scikit-image/scikit-image/issues/3092')) def test_spacing_1(): n = 30 lx, ly, lz = n, n, n data, _ = make_3d_syntheticdata(lx, ly, lz) # Rescale `data` along Y axis # `resize` is not yet 3D capable, so this must be done by looping in 2D. data_aniso = np.zeros((n, n * 2, n)) for i, yz in enumerate(data): data_aniso[i, :, :] = resize(yz, (n * 2, n), mode='constant', anti_aliasing=False) # Generate new labels small_l = int(lx // 5) labels_aniso = np.zeros_like(data_aniso) labels_aniso[lx // 5, ly // 5, lz // 5] = 1 labels_aniso[lx // 2 + small_l // 4, ly - small_l // 2, lz // 2 - small_l // 4] = 2 # Test with `spacing` kwarg # First, anisotropic along Y with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg', spacing=(1., 2., 1.)) assert (labels_aniso[13:17, 26:34, 13:17] == 2).all() # Rescale `data` along X axis # `resize` is not yet 3D capable, so this must be done by looping in 2D. data_aniso = np.zeros((n, n * 2, n)) for i in range(data.shape[1]): data_aniso[i, :, :] = resize(data[:, 1, :], (n * 2, n), mode='constant', anti_aliasing=False) # Generate new labels small_l = int(lx // 5) labels_aniso2 = np.zeros_like(data_aniso) labels_aniso2[lx // 5, ly // 5, lz // 5] = 1 labels_aniso2[lx - small_l // 2, ly // 2 + small_l // 4, lz // 2 - small_l // 4] = 2 # Anisotropic along X with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]): labels_aniso2 = random_walker(data_aniso, labels_aniso2, mode='cg', spacing=(2., 1., 1.)) assert (labels_aniso2[26:34, 13:17, 13:17] == 2).all() def test_trivial_cases(): # When all voxels are labeled img = np.ones((10, 10)) labels = np.ones((10, 10)) with expected_warnings(["Returning provided labels"]): pass_through = random_walker(img, labels) np.testing.assert_array_equal(pass_through, labels) # When all voxels are labeled AND return_full_prob is True labels[:, :5] = 3 expected = np.concatenate(((labels == 1)[..., np.newaxis], (labels == 3)[..., np.newaxis]), axis=2) with expected_warnings(["Returning provided labels"]): test = random_walker(img, labels, return_full_prob=True) np.testing.assert_array_equal(test, expected) # Unlabeled voxels not connected to seed, so nothing can be done img = np.full((10, 10), False) object_A = np.array([(6,7), (6,8), (7,7), (7,8)]) object_B = np.array([(3,1), (4,1), (2,2), (3,2), (4,2), (2,3), (3,3)]) for x, y in np.vstack((object_A, object_B)): img[y][x] = True markers = np.zeros((10, 10), dtype=np.int8) for x, y in object_B: markers[y][x] = 1 markers[img == 0] = -1 with expected_warnings(["All unlabeled pixels are isolated"]): output_labels = random_walker(img, markers) assert np.all(output_labels[markers == 1] == 1) # Here 0-labeled pixels could not be determined (no connexion to seed) assert np.all(output_labels[markers == 0] == -1) with expected_warnings(["All unlabeled pixels are isolated"]): test = random_walker(img, markers, return_full_prob=True) def test_length2_spacing(): # If this passes without raising an exception (warnings OK), the new # spacing code is working properly. np.random.seed(42) img = np.ones((10, 10)) + 0.2 * np.random.normal(size=(10, 10)) labels = np.zeros((10, 10), dtype=np.uint8) labels[2, 4] = 1 labels[6, 8] = 4 with expected_warnings([NUMPY_MATRIX_WARNING]): random_walker(img, labels, spacing=(1., 2.)) def test_bad_inputs(): # Too few dimensions img = np.ones(10) labels = np.arange(10) with testing.raises(ValueError): random_walker(img, labels) with testing.raises(ValueError): random_walker(img, labels, channel_axis=-1) # Too many dimensions np.random.seed(42) img = np.random.normal(size=(3, 3, 3, 3, 3)) labels = np.arange(3 ** 5).reshape(img.shape) with testing.raises(ValueError): random_walker(img, labels) with testing.raises(ValueError): random_walker(img, labels, channel_axis=-1) # Spacing incorrect length img = np.random.normal(size=(10, 10)) labels = np.zeros((10, 10)) labels[2, 4] = 2 labels[6, 8] = 5 with testing.raises(ValueError): random_walker(img, labels, spacing=(1,)) # Invalid mode img = np.random.normal(size=(10, 10)) labels = np.zeros((10, 10)) with testing.raises(ValueError): random_walker(img, labels, mode='bad') def test_isolated_seeds(): np.random.seed(0) a = np.random.random((7, 7)) mask = - np.ones(a.shape) # This pixel is an isolated seed mask[1, 1] = 1 # Unlabeled pixels mask[3:, 3:] = 0 # Seeds connected to unlabeled pixels mask[4, 4] = 2 mask[6, 6] = 1 # Test that no error is raised, and that labels of isolated seeds are OK with expected_warnings([NUMPY_MATRIX_WARNING, 'The probability range is outside']): res = random_walker(a, mask) assert res[1, 1] == 1 with expected_warnings([NUMPY_MATRIX_WARNING, 'The probability range is outside']): res = random_walker(a, mask, return_full_prob=True) assert res[0, 1, 1] == 1 assert res[1, 1, 1] == 0 def test_isolated_area(): np.random.seed(0) a = np.random.random((7, 7)) mask = - np.ones(a.shape) # This pixel is an isolated seed mask[1, 1] = 0 # Unlabeled pixels mask[3:, 3:] = 0 # Seeds connected to unlabeled pixels mask[4, 4] = 2 mask[6, 6] = 1 # Test that no error is raised, and that labels of isolated seeds are OK with expected_warnings([NUMPY_MATRIX_WARNING, 'The probability range is outside']): res = random_walker(a, mask) assert res[1, 1] == 0 with expected_warnings([NUMPY_MATRIX_WARNING, 'The probability range is outside']): res = random_walker(a, mask, return_full_prob=True) assert res[0, 1, 1] == 0 assert res[1, 1, 1] == 0 def test_prob_tol(): np.random.seed(0) a = np.random.random((7, 7)) mask = - np.ones(a.shape) # This pixel is an isolated seed mask[1, 1] = 1 # Unlabeled pixels mask[3:, 3:] = 0 # Seeds connected to unlabeled pixels mask[4, 4] = 2 mask[6, 6] = 1 with expected_warnings([NUMPY_MATRIX_WARNING, 'The probability range is outside']): res = random_walker(a, mask, return_full_prob=True) # Lower beta, no warning is expected. with expected_warnings([NUMPY_MATRIX_WARNING]): res = random_walker(a, mask, return_full_prob=True, beta=10) assert res[0, 1, 1] == 1 assert res[1, 1, 1] == 0 # Being more prob_tol tolerant, no warning is expected. with expected_warnings([NUMPY_MATRIX_WARNING]): res = random_walker(a, mask, return_full_prob=True, prob_tol=1e-1) assert res[0, 1, 1] == 1 assert res[1, 1, 1] == 0 # Reduced tol, no warning is expected. with expected_warnings([NUMPY_MATRIX_WARNING]): res = random_walker(a, mask, return_full_prob=True, tol=1e-9) assert res[0, 1, 1] == 1 assert res[1, 1, 1] == 0 def test_umfpack_import(): from skimage.segmentation import random_walker_segmentation UmfpackContext = random_walker_segmentation.UmfpackContext try: # when scikit-umfpack is installed UmfpackContext should not be None import scikits.umfpack assert UmfpackContext is not None except ImportError: assert UmfpackContext is None return