from itertools import product import numpy as np import pytest from numpy.testing import assert_equal from skimage import data, filters, img_as_float from skimage._shared.testing import test_parallel, expected_warnings from skimage.segmentation import slic @test_parallel() def test_color_2d(): rnd = np.random.default_rng(0) img = np.zeros((20, 21, 3)) img[:10, :10, 0] = 1 img[10:, :10, 1] = 1 img[10:, 10:, 2] = 1 img += 0.01 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, n_segments=4, sigma=0, enforce_connectivity=False, start_label=0) # we expect 4 segments assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape[:-1]) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3) def test_max_iter_kwarg_deprecation(): img = np.zeros((20, 21, 3)) with expected_warnings(["`max_iter` is a deprecated argument"]): slic(img, max_iter=10, start_label=0) def test_multichannel_2d(): rnd = np.random.default_rng(0) img = np.zeros((20, 20, 8)) img[:10, :10, 0:2] = 1 img[:10, 10:, 2:4] = 1 img[10:, :10, 4:6] = 1 img[10:, 10:, 6:8] = 1 img += 0.01 * rnd.normal(size=img.shape) img = np.clip(img, 0, 1, out=img) seg = slic(img, n_segments=4, enforce_connectivity=False, start_label=0) # we expect 4 segments assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape[:-1]) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3) def test_gray_2d(): rnd = np.random.default_rng(0) img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, sigma=0, n_segments=4, compactness=1, channel_axis=None, convert2lab=False, start_label=0) assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3) def test_gray_2d_deprecated_multichannel(): rnd = np.random.default_rng(0) img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 with expected_warnings(["`multichannel` is a deprecated argument"]): seg = slic(img, sigma=0, n_segments=4, compactness=1, multichannel=False, convert2lab=False, start_label=0) assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3) with expected_warnings(["Providing the `multichannel` argument"]): seg = slic(img, 4, 1, 10, 0, None, False, convert2lab=False, start_label=0) def _check_segment_labels(seg1, seg2, allowed_mismatch_ratio=0.1): size = seg1.size ndiff = np.sum(seg1 != seg2) assert (ndiff / size) < allowed_mismatch_ratio def test_slic_consistency_across_image_magnitude(): # verify that that images of various scales across integer and float dtypes # give the same segmentation result img_uint8 = data.cat()[:256, :128] img_uint16 = 256 * img_uint8.astype(np.uint16) img_float32 = img_as_float(img_uint8) img_float32_norm = img_float32 / img_float32.max() seg1 = slic(img_uint8) seg2 = slic(img_uint16) seg3 = slic(img_float32) seg4 = slic(img_float32_norm) np.testing.assert_array_equal(seg1, seg2) np.testing.assert_array_equal(seg1, seg3) # Floating point cases can have mismatch due to floating point error # exact match was observed on x86_64, but mismatches seen no i686. # For now just verify that a similar number of superpixels are present in # each case. n_seg1 = seg1.max() n_seg4 = seg4.max() assert abs(n_seg1 - n_seg4) / n_seg1 < 0.5 def test_color_3d(): rnd = np.random.default_rng(0) img = np.zeros((20, 21, 22, 3)) slices = [] for dim_size in img.shape[:-1]: midpoint = dim_size // 2 slices.append((slice(None, midpoint), slice(midpoint, None))) slices = list(product(*slices)) colors = list(product(*(([0, 1],) * 3))) for s, c in zip(slices, colors): img[s] = c img += 0.01 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, sigma=0, n_segments=8, start_label=0) assert_equal(len(np.unique(seg)), 8) for s, c in zip(slices, range(8)): assert_equal(seg[s], c) def test_gray_3d(): rnd = np.random.default_rng(0) img = np.zeros((20, 21, 22)) slices = [] for dim_size in img.shape: midpoint = dim_size // 2 slices.append((slice(None, midpoint), slice(midpoint, None))) slices = list(product(*slices)) shades = np.arange(0, 1.000001, 1.0 / 7) for s, sh in zip(slices, shades): img[s] = sh img += 0.001 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, sigma=0, n_segments=8, compactness=1, channel_axis=None, convert2lab=False, start_label=0) assert_equal(len(np.unique(seg)), 8) for s, c in zip(slices, range(8)): assert_equal(seg[s], c) def test_list_sigma(): rnd = np.random.default_rng(0) img = np.array([[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1]], float) img += 0.1 * rnd.normal(size=img.shape) result_sigma = np.array([[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], int) with expected_warnings(["Input image is 2D: sigma number of " "elements must be 2"]): seg_sigma = slic(img, n_segments=2, sigma=[1, 50, 1], channel_axis=None, start_label=0) assert_equal(seg_sigma, result_sigma) def test_spacing(): rnd = np.random.default_rng(0) img = np.array([[1, 1, 1, 0, 0], [1, 1, 0, 0, 0]], float) result_non_spaced = np.array([[0, 0, 0, 1, 1], [0, 0, 1, 1, 1]], int) result_spaced = np.array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1]], int) img += 0.1 * rnd.normal(size=img.shape) seg_non_spaced = slic(img, n_segments=2, sigma=0, channel_axis=None, compactness=1.0, start_label=0) seg_spaced = slic(img, n_segments=2, sigma=0, spacing=[500, 1], compactness=1.0, channel_axis=None, start_label=0) assert_equal(seg_non_spaced, result_non_spaced) assert_equal(seg_spaced, result_spaced) def test_invalid_lab_conversion(): img = np.array([[1, 1, 1, 0, 0], [1, 1, 0, 0, 0]], float) + 1 with pytest.raises(ValueError): slic(img, channel_axis=-1, convert2lab=True, start_label=0) def test_enforce_connectivity(): img = np.array([[0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 0]], float) segments_connected = slic(img, 2, compactness=0.0001, enforce_connectivity=True, convert2lab=False, start_label=0) segments_disconnected = slic(img, 2, compactness=0.0001, enforce_connectivity=False, convert2lab=False, start_label=0) # Make sure nothing fatal occurs (e.g. buffer overflow) at low values of # max_size_factor segments_connected_low_max = slic(img, 2, compactness=0.0001, enforce_connectivity=True, convert2lab=False, max_size_factor=0.8, start_label=0) result_connected = np.array([[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], float) result_disconnected = np.array([[0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 0]], float) assert_equal(segments_connected, result_connected) assert_equal(segments_disconnected, result_disconnected) assert_equal(segments_connected_low_max, result_connected) def test_slic_zero(): # Same as test_color_2d but with slic_zero=True rnd = np.random.default_rng(0) img = np.zeros((20, 21, 3)) img[:10, :10, 0] = 1 img[10:, :10, 1] = 1 img[10:, 10:, 2] = 1 img += 0.01 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, n_segments=4, sigma=0, slic_zero=True, start_label=0) # we expect 4 segments assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape[:-1]) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3) def test_more_segments_than_pixels(): rnd = np.random.default_rng(0) img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, sigma=0, n_segments=500, compactness=1, channel_axis=None, convert2lab=False, start_label=0) assert np.all(seg.ravel() == np.arange(seg.size)) def test_color_2d_mask(): rnd = np.random.default_rng(0) msk = np.zeros((20, 21)) msk[2:-2, 2:-2] = 1 img = np.zeros((20, 21, 3)) img[:10, :10, 0] = 1 img[10:, :10, 1] = 1 img[10:, 10:, 2] = 1 img += 0.01 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, n_segments=4, sigma=0, enforce_connectivity=False, mask=msk) # we expect 4 segments + masked area assert_equal(len(np.unique(seg)), 5) assert_equal(seg.shape, img.shape[:-1]) # segments assert_equal(seg[2:10, 2:10], 1) assert_equal(seg[10:-2, 2:10], 4) assert_equal(seg[2:10, 10:-2], 2) assert_equal(seg[10:-2, 10:-2], 3) # non masked area assert_equal(seg[:2, :], 0) assert_equal(seg[-2:, :], 0) assert_equal(seg[:, :2], 0) assert_equal(seg[:, -2:], 0) def test_multichannel_2d_mask(): rnd = np.random.default_rng(0) msk = np.zeros((20, 20)) msk[2:-2, 2:-2] = 1 img = np.zeros((20, 20, 8)) img[:10, :10, 0:2] = 1 img[:10, 10:, 2:4] = 1 img[10:, :10, 4:6] = 1 img[10:, 10:, 6:8] = 1 img += 0.01 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, n_segments=4, enforce_connectivity=False, mask=msk) # we expect 4 segments + masked area assert_equal(len(np.unique(seg)), 5) assert_equal(seg.shape, img.shape[:-1]) # segments assert_equal(seg[2:10, 2:10], 2) assert_equal(seg[2:10, 10:-2], 1) assert_equal(seg[10:-2, 2:10], 4) assert_equal(seg[10:-2, 10:-2], 3) # non masked area assert_equal(seg[:2, :], 0) assert_equal(seg[-2:, :], 0) assert_equal(seg[:, :2], 0) assert_equal(seg[:, -2:], 0) def test_gray_2d_mask(): rnd = np.random.default_rng(0) msk = np.zeros((20, 21)) msk[2:-2, 2:-2] = 1 img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, sigma=0, n_segments=4, compactness=1, channel_axis=None, convert2lab=False, mask=msk) assert_equal(len(np.unique(seg)), 5) assert_equal(seg.shape, img.shape) # segments assert_equal(seg[2:10, 2:10], 1) assert_equal(seg[2:10, 10:-2], 2) assert_equal(seg[10:-2, 2:10], 3) assert_equal(seg[10:-2, 10:-2], 4) # non masked area assert_equal(seg[:2, :], 0) assert_equal(seg[-2:, :], 0) assert_equal(seg[:, :2], 0) assert_equal(seg[:, -2:], 0) def test_list_sigma_mask(): rnd = np.random.default_rng(0) msk = np.zeros((2, 6)) msk[:, 1:-1] = 1 img = np.array([[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1]], float) img += 0.1 * rnd.normal(size=img.shape) result_sigma = np.array([[0, 1, 1, 2, 2, 0], [0, 1, 1, 2, 2, 0]], int) seg_sigma = slic(img, n_segments=2, sigma=[50, 1], channel_axis=None, mask=msk) assert_equal(seg_sigma, result_sigma) def test_spacing_mask(): rnd = np.random.default_rng(0) msk = np.zeros((2, 5)) msk[:, 1:-1] = 1 img = np.array([[1, 1, 1, 0, 0], [1, 1, 0, 0, 0]], float) result_non_spaced = np.array([[0, 1, 1, 2, 0], [0, 1, 2, 2, 0]], int) result_spaced = np.array([[0, 1, 1, 1, 0], [0, 2, 2, 2, 0]], int) img += 0.1 * rnd.normal(size=img.shape) seg_non_spaced = slic(img, n_segments=2, sigma=0, channel_axis=None, compactness=1.0, mask=msk) seg_spaced = slic(img, n_segments=2, sigma=0, spacing=[50, 1], compactness=1.0, channel_axis=None, mask=msk) assert_equal(seg_non_spaced, result_non_spaced) assert_equal(seg_spaced, result_spaced) def test_enforce_connectivity_mask(): msk = np.zeros((3, 6)) msk[:, 1:-1] = 1 img = np.array([[0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 0]], float) segments_connected = slic(img, 2, compactness=0.0001, enforce_connectivity=True, convert2lab=False, mask=msk) segments_disconnected = slic(img, 2, compactness=0.0001, enforce_connectivity=False, convert2lab=False, mask=msk) # Make sure nothing fatal occurs (e.g. buffer overflow) at low values of # max_size_factor segments_connected_low_max = slic(img, 2, compactness=0.0001, enforce_connectivity=True, convert2lab=False, max_size_factor=0.8, mask=msk) result_connected = np.array([[0, 1, 1, 2, 2, 0], [0, 1, 1, 2, 2, 0], [0, 1, 1, 2, 2, 0]], float) result_disconnected = np.array([[0, 1, 1, 2, 2, 0], [0, 1, 1, 2, 2, 0], [0, 1, 1, 2, 2, 0]], float) assert_equal(segments_connected, result_connected) assert_equal(segments_disconnected, result_disconnected) assert_equal(segments_connected_low_max, result_connected) def test_slic_zero_mask(): rnd = np.random.default_rng(0) msk = np.zeros((20, 21)) msk[2:-2, 2:-2] = 1 img = np.zeros((20, 21, 3)) img[:10, :10, 0] = 1 img[10:, :10, 1] = 1 img[10:, 10:, 2] = 1 img += 0.01 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, n_segments=4, sigma=0, slic_zero=True, mask=msk) # we expect 4 segments + masked area assert_equal(len(np.unique(seg)), 5) assert_equal(seg.shape, img.shape[:-1]) # segments assert_equal(seg[2:10, 2:10], 1) assert_equal(seg[2:10, 10:-2], 2) assert_equal(seg[10:-2, 2:10], 3) assert_equal(seg[10:-2, 10:-2], 4) # non masked area assert_equal(seg[:2, :], 0) assert_equal(seg[-2:, :], 0) assert_equal(seg[:, :2], 0) assert_equal(seg[:, -2:], 0) def test_more_segments_than_pixels_mask(): rnd = np.random.default_rng(0) msk = np.zeros((20, 21)) msk[2:-2, 2:-2] = 1 img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, sigma=0, n_segments=500, compactness=1, channel_axis=None, convert2lab=False, mask=msk) expected = np.arange(seg[2:-2, 2:-2].size) + 1 assert np.all(seg[2:-2, 2:-2].ravel() == expected) def test_color_3d_mask(): msk = np.zeros((20, 21, 22)) msk[2:-2, 2:-2, 2:-2] = 1 rnd = np.random.default_rng(0) img = np.zeros((20, 21, 22, 3)) slices = [] for dim_size in msk.shape: midpoint = dim_size // 2 slices.append((slice(None, midpoint), slice(midpoint, None))) slices = list(product(*slices)) colors = list(product(*(([0, 1],) * 3))) for s, c in zip(slices, colors): img[s] = c img += 0.01 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, sigma=0, n_segments=8, mask=msk) # we expect 8 segments + masked area assert_equal(len(np.unique(seg)), 9) for s, c in zip(slices, range(1, 9)): assert_equal(seg[s][2:-2, 2:-2, 2:-2], c) def test_gray_3d_mask(): msk = np.zeros((20, 21, 22)) msk[2:-2, 2:-2, 2:-2] = 1 rnd = np.random.default_rng(0) img = np.zeros((20, 21, 22)) slices = [] for dim_size in img.shape: midpoint = dim_size // 2 slices.append((slice(None, midpoint), slice(midpoint, None))) slices = list(product(*slices)) shades = np.linspace(0, 1, 8) for s, sh in zip(slices, shades): img[s] = sh img += 0.001 * rnd.normal(size=img.shape) np.clip(img, 0, 1, out=img) seg = slic(img, sigma=0, n_segments=8, channel_axis=None, convert2lab=False, mask=msk) # we expect 8 segments + masked area assert_equal(len(np.unique(seg)), 9) for s, c in zip(slices, range(1, 9)): assert_equal(seg[s][2:-2, 2:-2, 2:-2], c) @pytest.mark.parametrize( "dtype", ['float16', 'float32', 'float64', 'uint8', 'int'] ) def test_dtype_support(dtype): img = np.random.rand(28, 28).astype(dtype) # Simply run the function to assert that it runs without error slic(img, start_label=1) def test_start_label_fix(): """Tests the fix for a bug producing a label < start_label (gh-6240). For the v0.19.1 release, the `img` and `slic` call as below result in two non-contiguous regions with value 0 despite `start_label=1`. We verify that the minimum label is now `start_label` as expected. """ # generate bumpy data that gives unexpected label prior to bug fix rng = np.random.default_rng(9) img = rng.standard_normal((8, 13)) > 0 img = filters.gaussian(img, sigma=1) start_label = 1 superp = slic(img, start_label=start_label, channel_axis=None, n_segments=6, compactness=0.01, enforce_connectivity=True, max_num_iter=10) assert superp.min() == start_label