import numpy as np from skimage.util._map_array import map_array, ArrayMap from skimage._shared import testing def test_map_array_incorrect_output_shape(): labels = np.random.randint(0, 5, size=(24, 25)) out = np.empty((24, 24)) in_values = np.unique(labels) out_values = np.random.random(in_values.shape).astype(out.dtype) with testing.raises(ValueError): map_array(labels, in_values, out_values, out=out) def test_map_array_non_contiguous_output_array(): labels = np.random.randint(0, 5, size=(24, 25)) out = np.empty((24 * 3, 25 * 2))[::3, ::2] in_values = np.unique(labels) out_values = np.random.random(in_values.shape).astype(out.dtype) with testing.raises(ValueError): map_array(labels, in_values, out_values, out=out) def test_arraymap_long_str(): labels = np.random.randint(0, 40, size=(24, 25)) in_values = np.unique(labels) out_values = np.random.random(in_values.shape) m = ArrayMap(in_values, out_values) assert len(str(m).split('\n')) == m._max_str_lines + 2 def test_arraymap_update(): in_values = np.unique(np.random.randint(0, 200, size=5)) out_values = np.random.random(len(in_values)) m = ArrayMap(in_values, out_values) image = np.random.randint(1, len(m), size=(512, 512)) assert np.all(m[image] < 1) # missing values map to 0. m[1:] += 1 assert np.all(m[image] >= 1) def test_arraymap_bool_index(): in_values = np.unique(np.random.randint(0, 200, size=5)) out_values = np.random.random(len(in_values)) m = ArrayMap(in_values, out_values) image = np.random.randint(1, len(in_values), size=(512, 512)) assert np.all(m[image] < 1) # missing values map to 0. positive = np.ones(len(m), dtype=bool) positive[0] = False m[positive] += 1 assert np.all(m[image] >= 1)