from skimage._shared import testing from skimage._shared.testing import assert_array_equal, assert_allclose import numpy as np from skimage.data import camera from skimage.util import random_noise, img_as_float def test_set_seed(): seed = 42 cam = camera() test = random_noise(cam, seed=seed) assert_array_equal(test, random_noise(cam, seed=seed)) def test_salt(): seed = 42 cam = img_as_float(camera()) amount = 0.15 cam_noisy = random_noise(cam, seed=seed, mode='salt', amount=amount) saltmask = cam != cam_noisy # Ensure all changes are to 1.0 assert_allclose(cam_noisy[saltmask], np.ones(saltmask.sum())) # Ensure approximately correct amount of noise was added proportion = float(saltmask.sum()) / (cam.shape[0] * cam.shape[1]) tolerance = 1e-2 assert abs(amount - proportion) <= tolerance def test_salt_p1(): image = np.random.rand(2, 3) noisy = random_noise(image, mode='salt', amount=1) assert_array_equal(noisy, [[1, 1, 1], [1, 1, 1]]) def test_singleton_dim(): """Ensure images where size of a given dimension is 1 work correctly.""" image = np.random.rand(1, 1000) noisy = random_noise(image, mode='salt', amount=0.1, seed=42) tolerance = 5e-2 assert abs(np.average(noisy == 1) - 0.1) <= tolerance def test_pepper(): seed = 42 cam = img_as_float(camera()) data_signed = cam * 2. - 1. # Same image, on range [-1, 1] amount = 0.15 cam_noisy = random_noise(cam, seed=seed, mode='pepper', amount=amount) peppermask = cam != cam_noisy # Ensure all changes are to 1.0 assert_allclose(cam_noisy[peppermask], np.zeros(peppermask.sum())) # Ensure approximately correct amount of noise was added proportion = float(peppermask.sum()) / (cam.shape[0] * cam.shape[1]) tolerance = 1e-2 assert abs(amount - proportion) <= tolerance # Check to make sure pepper gets added properly to signed images orig_zeros = (data_signed == -1).sum() cam_noisy_signed = random_noise(data_signed, seed=seed, mode='pepper', amount=.15) proportion = (float((cam_noisy_signed == -1).sum() - orig_zeros) / (cam.shape[0] * cam.shape[1])) assert abs(amount - proportion) <= tolerance def test_salt_and_pepper(): seed = 42 cam = img_as_float(camera()) amount = 0.15 cam_noisy = random_noise(cam, seed=seed, mode='s&p', amount=amount, salt_vs_pepper=0.25) saltmask = np.logical_and(cam != cam_noisy, cam_noisy == 1.) peppermask = np.logical_and(cam != cam_noisy, cam_noisy == 0.) # Ensure all changes are to 0. or 1. assert_allclose(cam_noisy[saltmask], np.ones(saltmask.sum())) assert_allclose(cam_noisy[peppermask], np.zeros(peppermask.sum())) # Ensure approximately correct amount of noise was added proportion = float( saltmask.sum() + peppermask.sum()) / (cam.shape[0] * cam.shape[1]) tolerance = 1e-2 assert abs(amount - proportion) <= tolerance # Verify the relative amount of salt vs. pepper is close to expected assert 0.18 < saltmask.sum() / peppermask.sum() < 0.35 def test_gaussian(): seed = 42 data = np.zeros((128, 128)) + 0.5 data_gaussian = random_noise(data, seed=seed, var=0.01) assert 0.008 < data_gaussian.var() < 0.012 data_gaussian = random_noise(data, seed=seed, mean=0.3, var=0.015) assert 0.28 < data_gaussian.mean() - 0.5 < 0.32 assert 0.012 < data_gaussian.var() < 0.018 def test_localvar(): seed = 23703 data = np.zeros((128, 128)) + 0.5 local_vars = np.zeros((128, 128)) + 0.001 local_vars[:64, 64:] = 0.1 local_vars[64:, :64] = 0.25 local_vars[64:, 64:] = 0.45 data_gaussian = random_noise(data, mode='localvar', seed=seed, local_vars=local_vars, clip=False) assert 0. < data_gaussian[:64, :64].var() < 0.002 assert 0.095 < data_gaussian[:64, 64:].var() < 0.105 assert 0.245 < data_gaussian[64:, :64].var() < 0.255 assert 0.445 < data_gaussian[64:, 64:].var() < 0.455 # Ensure local variance bounds checking works properly bad_local_vars = np.zeros_like(data) with testing.raises(ValueError): random_noise(data, mode='localvar', seed=seed, local_vars=bad_local_vars) bad_local_vars += 0.1 bad_local_vars[0, 0] = -1 with testing.raises(ValueError): random_noise(data, mode='localvar', seed=seed, local_vars=bad_local_vars) def test_speckle(): seed = 42 data = np.zeros((128, 128)) + 0.1 rng = np.random.default_rng(seed) noise = rng.normal(0.1, 0.02 ** 0.5, (128, 128)) expected = np.clip(data + data * noise, 0, 1) data_speckle = random_noise(data, mode='speckle', seed=seed, mean=0.1, var=0.02) assert_allclose(expected, data_speckle) def test_poisson(): seed = 42 data = camera() # 512x512 grayscale uint8 cam_noisy = random_noise(data, mode='poisson', seed=seed) cam_noisy2 = random_noise(data, mode='poisson', seed=seed, clip=False) rng = np.random.default_rng(seed) expected = rng.poisson(img_as_float(data) * 256) / 256. assert_allclose(cam_noisy, np.clip(expected, 0., 1.)) assert_allclose(cam_noisy2, expected) def test_clip_poisson(): seed = 42 data = camera() # 512x512 grayscale uint8 data_signed = img_as_float(data) * 2. - 1. # Same image, on range [-1, 1] # Signed and unsigned, clipped cam_poisson = random_noise(data, mode='poisson', seed=seed, clip=True) cam_poisson2 = random_noise(data_signed, mode='poisson', seed=seed, clip=True) assert (cam_poisson.max() == 1.) and (cam_poisson.min() == 0.) assert (cam_poisson2.max() == 1.) and (cam_poisson2.min() == -1.) # Signed and unsigned, unclipped cam_poisson = random_noise(data, mode='poisson', seed=seed, clip=False) cam_poisson2 = random_noise(data_signed, mode='poisson', seed=seed, clip=False) assert (cam_poisson.max() > 1.15) and (cam_poisson.min() == 0.) assert (cam_poisson2.max() > 1.3) and (cam_poisson2.min() == -1.) def test_clip_gaussian(): seed = 42 data = camera() # 512x512 grayscale uint8 data_signed = img_as_float(data) * 2. - 1. # Same image, on range [-1, 1] # Signed and unsigned, clipped cam_gauss = random_noise(data, mode='gaussian', seed=seed, clip=True) cam_gauss2 = random_noise(data_signed, mode='gaussian', seed=seed, clip=True) assert (cam_gauss.max() == 1.) and (cam_gauss.min() == 0.) assert (cam_gauss2.max() == 1.) and (cam_gauss2.min() == -1.) # Signed and unsigned, unclipped cam_gauss = random_noise(data, mode='gaussian', seed=seed, clip=False) cam_gauss2 = random_noise(data_signed, mode='gaussian', seed=seed, clip=False) assert (cam_gauss.max() > 1.22) and (cam_gauss.min() < -0.35) assert (cam_gauss2.max() > 1.219) and (cam_gauss2.min() < -1.219) def test_clip_speckle(): seed = 42 data = camera() # 512x512 grayscale uint8 data_signed = img_as_float(data) * 2. - 1. # Same image, on range [-1, 1] # Signed and unsigned, clipped cam_speckle = random_noise(data, mode='speckle', seed=seed, clip=True) cam_speckle_sig = random_noise(data_signed, mode='speckle', seed=seed, clip=True) assert (cam_speckle.max() == 1.) and (cam_speckle.min() == 0.) assert (cam_speckle_sig.max() == 1.) and (cam_speckle_sig.min() == -1.) # Signed and unsigned, unclipped cam_speckle = random_noise(data, mode='speckle', seed=seed, clip=False) cam_speckle_sig = random_noise(data_signed, mode='speckle', seed=seed, clip=False) assert (cam_speckle.max() > 1.219) and (cam_speckle.min() == 0.) assert (cam_speckle_sig.max() > 1.219) and (cam_speckle_sig.min() < -1.219) def test_bad_mode(): data = np.zeros((64, 64)) with testing.raises(KeyError): random_noise(data, 'perlin')