import numpy as np from skimage.util import unique_rows from skimage._shared import testing from skimage._shared.testing import assert_equal def test_discontiguous_array(): ar = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], np.uint8) ar = ar[::2] ar_out = unique_rows(ar) desired_ar_out = np.array([[1, 0, 1]], np.uint8) assert_equal(ar_out, desired_ar_out) def test_uint8_array(): ar = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], np.uint8) ar_out = unique_rows(ar) desired_ar_out = np.array([[0, 1, 0], [1, 0, 1]], np.uint8) assert_equal(ar_out, desired_ar_out) def test_float_array(): ar = np.array([[1.1, 0.0, 1.1], [0.0, 1.1, 0.0], [1.1, 0.0, 1.1]], float) ar_out = unique_rows(ar) desired_ar_out = np.array([[0.0, 1.1, 0.0], [1.1, 0.0, 1.1]], float) assert_equal(ar_out, desired_ar_out) def test_1d_array(): ar = np.array([1, 0, 1, 1], np.uint8) with testing.raises(ValueError): unique_rows(ar) def test_3d_array(): ar = np.arange(8).reshape((2, 2, 2)) with testing.raises(ValueError): unique_rows(ar)