""" Distribution functions used in GLM """ # Author: Christian Lorentzen # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import namedtuple import numbers import numpy as np from scipy.special import xlogy DistributionBoundary = namedtuple("DistributionBoundary", ("value", "inclusive")) class ExponentialDispersionModel(metaclass=ABCMeta): r"""Base class for reproductive Exponential Dispersion Models (EDM). The pdf of :math:`Y\sim \mathrm{EDM}(y_\textrm{pred}, \phi)` is given by .. math:: p(y| \theta, \phi) = c(y, \phi) \exp\left(\frac{\theta y-A(\theta)}{\phi}\right) = \tilde{c}(y, \phi) \exp\left(-\frac{d(y, y_\textrm{pred})}{2\phi}\right) with mean :math:`\mathrm{E}[Y] = A'(\theta) = y_\textrm{pred}`, variance :math:`\mathrm{Var}[Y] = \phi \cdot v(y_\textrm{pred})`, unit variance :math:`v(y_\textrm{pred})` and unit deviance :math:`d(y,y_\textrm{pred})`. Methods ------- deviance deviance_derivative in_y_range unit_deviance unit_deviance_derivative unit_variance References ---------- https://en.wikipedia.org/wiki/Exponential_dispersion_model. """ def in_y_range(self, y): """Returns ``True`` if y is in the valid range of Y~EDM. Parameters ---------- y : array of shape (n_samples,) Target values. """ # Note that currently supported distributions have +inf upper bound if not isinstance(self._lower_bound, DistributionBoundary): raise TypeError( "_lower_bound attribute must be of type DistributionBoundary" ) if self._lower_bound.inclusive: return np.greater_equal(y, self._lower_bound.value) else: return np.greater(y, self._lower_bound.value) @abstractmethod def unit_variance(self, y_pred): r"""Compute the unit variance function. The unit variance :math:`v(y_\textrm{pred})` determines the variance as a function of the mean :math:`y_\textrm{pred}` by :math:`\mathrm{Var}[Y_i] = \phi/s_i*v(y_\textrm{pred}_i)`. It can also be derived from the unit deviance :math:`d(y,y_\textrm{pred})` as .. math:: v(y_\textrm{pred}) = \frac{2}{ \frac{\partial^2 d(y,y_\textrm{pred})}{ \partialy_\textrm{pred}^2}}\big|_{y=y_\textrm{pred}} See also :func:`variance`. Parameters ---------- y_pred : array of shape (n_samples,) Predicted mean. """ @abstractmethod def unit_deviance(self, y, y_pred, check_input=False): r"""Compute the unit deviance. The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the log-likelihood as :math:`d(y,y_\textrm{pred}) = -2\phi\cdot \left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).` Parameters ---------- y : array of shape (n_samples,) Target values. y_pred : array of shape (n_samples,) Predicted mean. check_input : bool, default=False If True raise an exception on invalid y or y_pred values, otherwise they will be propagated as NaN. Returns ------- deviance: array of shape (n_samples,) Computed deviance """ def unit_deviance_derivative(self, y, y_pred): r"""Compute the derivative of the unit deviance w.r.t. y_pred. The derivative of the unit deviance is given by :math:`\frac{\partial}{\partialy_\textrm{pred}}d(y,y_\textrm{pred}) = -2\frac{y-y_\textrm{pred}}{v(y_\textrm{pred})}` with unit variance :math:`v(y_\textrm{pred})`. Parameters ---------- y : array of shape (n_samples,) Target values. y_pred : array of shape (n_samples,) Predicted mean. """ return -2 * (y - y_pred) / self.unit_variance(y_pred) def deviance(self, y, y_pred, weights=1): r"""Compute the deviance. The deviance is a weighted sum of the per sample unit deviances, :math:`D = \sum_i s_i \cdot d(y_i, y_\textrm{pred}_i)` with weights :math:`s_i` and unit deviance :math:`d(y,y_\textrm{pred})`. In terms of the log-likelihood it is :math:`D = -2\phi\cdot \left(loglike(y,y_\textrm{pred},\frac{phi}{s}) - loglike(y,y,\frac{phi}{s})\right)`. Parameters ---------- y : array of shape (n_samples,) Target values. y_pred : array of shape (n_samples,) Predicted mean. weights : {int, array of shape (n_samples,)}, default=1 Weights or exposure to which variance is inverse proportional. """ return np.sum(weights * self.unit_deviance(y, y_pred)) def deviance_derivative(self, y, y_pred, weights=1): r"""Compute the derivative of the deviance w.r.t. y_pred. It gives :math:`\frac{\partial}{\partial y_\textrm{pred}} D(y, \y_\textrm{pred}; weights)`. Parameters ---------- y : array, shape (n_samples,) Target values. y_pred : array, shape (n_samples,) Predicted mean. weights : {int, array of shape (n_samples,)}, default=1 Weights or exposure to which variance is inverse proportional. """ return weights * self.unit_deviance_derivative(y, y_pred) class TweedieDistribution(ExponentialDispersionModel): r"""A class for the Tweedie distribution. A Tweedie distribution with mean :math:`y_\textrm{pred}=\mathrm{E}[Y]` is uniquely defined by it's mean-variance relationship :math:`\mathrm{Var}[Y] \propto y_\textrm{pred}^power`. Special cases are: ===== ================ Power Distribution ===== ================ 0 Normal 1 Poisson (1,2) Compound Poisson 2 Gamma 3 Inverse Gaussian Parameters ---------- power : float, default=0 The variance power of the `unit_variance` :math:`v(y_\textrm{pred}) = y_\textrm{pred}^{power}`. For ``0=1." ) elif 1 <= power < 2: # Poisson or Compound Poisson distribution self._lower_bound = DistributionBoundary(0, inclusive=True) elif power >= 2: # Gamma, Positive Stable, Inverse Gaussian distributions self._lower_bound = DistributionBoundary(0, inclusive=False) else: # pragma: no cover # this branch should be unreachable. raise ValueError self._power = power def unit_variance(self, y_pred): """Compute the unit variance of a Tweedie distribution v(y_\textrm{pred})=y_\textrm{pred}**power. Parameters ---------- y_pred : array of shape (n_samples,) Predicted mean. """ return np.power(y_pred, self.power) def unit_deviance(self, y, y_pred, check_input=False): r"""Compute the unit deviance. The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the log-likelihood as :math:`d(y,y_\textrm{pred}) = -2\phi\cdot \left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).` Parameters ---------- y : array of shape (n_samples,) Target values. y_pred : array of shape (n_samples,) Predicted mean. check_input : bool, default=False If True raise an exception on invalid y or y_pred values, otherwise they will be propagated as NaN. Returns ------- deviance: array of shape (n_samples,) Computed deviance """ p = self.power if check_input: message = ( "Mean Tweedie deviance error with power={} can only be used on ".format( p ) ) if p < 0: # 'Extreme stable', y any real number, y_pred > 0 if (y_pred <= 0).any(): raise ValueError(message + "strictly positive y_pred.") elif p == 0: # Normal, y and y_pred can be any real number pass elif 0 < p < 1: raise ValueError( "Tweedie deviance is only defined for power<=0 and power>=1." ) elif 1 <= p < 2: # Poisson and compound Poisson distribution, y >= 0, y_pred > 0 if (y < 0).any() or (y_pred <= 0).any(): raise ValueError( message + "non-negative y and strictly positive y_pred." ) elif p >= 2: # Gamma and Extreme stable distribution, y and y_pred > 0 if (y <= 0).any() or (y_pred <= 0).any(): raise ValueError(message + "strictly positive y and y_pred.") else: # pragma: nocover # Unreachable statement raise ValueError if p < 0: # 'Extreme stable', y any real number, y_pred > 0 dev = 2 * ( np.power(np.maximum(y, 0), 2 - p) / ((1 - p) * (2 - p)) - y * np.power(y_pred, 1 - p) / (1 - p) + np.power(y_pred, 2 - p) / (2 - p) ) elif p == 0: # Normal distribution, y and y_pred any real number dev = (y - y_pred) ** 2 elif p < 1: raise ValueError( "Tweedie deviance is only defined for power<=0 and power>=1." ) elif p == 1: # Poisson distribution dev = 2 * (xlogy(y, y / y_pred) - y + y_pred) elif p == 2: # Gamma distribution dev = 2 * (np.log(y_pred / y) + y / y_pred - 1) else: dev = 2 * ( np.power(y, 2 - p) / ((1 - p) * (2 - p)) - y * np.power(y_pred, 1 - p) / (1 - p) + np.power(y_pred, 2 - p) / (2 - p) ) return dev class NormalDistribution(TweedieDistribution): """Class for the Normal (aka Gaussian) distribution.""" def __init__(self): super().__init__(power=0) class PoissonDistribution(TweedieDistribution): """Class for the scaled Poisson distribution.""" def __init__(self): super().__init__(power=1) class GammaDistribution(TweedieDistribution): """Class for the Gamma distribution.""" def __init__(self): super().__init__(power=2) class InverseGaussianDistribution(TweedieDistribution): """Class for the scaled InverseGaussianDistribution distribution.""" def __init__(self): super().__init__(power=3) EDM_DISTRIBUTIONS = { "normal": NormalDistribution, "poisson": PoissonDistribution, "gamma": GammaDistribution, "inverse-gaussian": InverseGaussianDistribution, }