"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort # Balazs Kegl # Jan Hendrik Metzen # Mathieu Blondel # # License: BSD 3 clause import warnings from inspect import signature from functools import partial from math import log import numpy as np from joblib import Parallel from scipy.special import expit from scipy.special import xlogy from scipy.optimize import fmin_bfgs from .base import ( BaseEstimator, ClassifierMixin, RegressorMixin, clone, MetaEstimatorMixin, is_classifier, ) from .preprocessing import label_binarize, LabelEncoder from .utils import ( column_or_1d, deprecated, indexable, check_matplotlib_support, ) from .utils.multiclass import check_classification_targets from .utils.fixes import delayed from .utils.validation import check_is_fitted, check_consistent_length from .utils.validation import _check_sample_weight, _num_samples from .utils import _safe_indexing from .isotonic import IsotonicRegression from .svm import LinearSVC from .model_selection import check_cv, cross_val_predict from .metrics._plot.base import _get_response class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator): """Probability calibration with isotonic regression or logistic regression. This class uses cross-validation to both estimate the parameters of a classifier and subsequently calibrate a classifier. With default `ensemble=True`, for each cv split it fits a copy of the base estimator to the training subset, and calibrates it using the testing subset. For prediction, predicted probabilities are averaged across these individual calibrated classifiers. When `ensemble=False`, cross-validation is used to obtain unbiased predictions, via :func:`~sklearn.model_selection.cross_val_predict`, which are then used for calibration. For prediction, the base estimator, trained using all the data, is used. This is the method implemented when `probabilities=True` for :mod:`sklearn.svm` estimators. Already fitted classifiers can be calibrated via the parameter `cv="prefit"`. In this case, no cross-validation is used and all provided data is used for calibration. The user has to take care manually that data for model fitting and calibration are disjoint. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on :term:`predict_proba`. Read more in the :ref:`User Guide `. Parameters ---------- base_estimator : estimator instance, default=None The classifier whose output need to be calibrated to provide more accurate `predict_proba` outputs. The default classifier is a :class:`~sklearn.svm.LinearSVC`. method : {'sigmoid', 'isotonic'}, default='sigmoid' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method (i.e. a logistic regression model) or 'isotonic' which is a non-parametric approach. It is not advised to use isotonic calibration with too few calibration samples ``(<<1000)`` since it tends to overfit. cv : int, cross-validation generator, iterable or "prefit", \ default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`~sklearn.model_selection.StratifiedKFold` is used. If ``y`` is neither binary nor multiclass, :class:`~sklearn.model_selection.KFold` is used. Refer to the :ref:`User Guide ` for the various cross-validation strategies that can be used here. If "prefit" is passed, it is assumed that `base_estimator` has been fitted already and all data is used for calibration. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. Base estimator clones are fitted in parallel across cross-validation iterations. Therefore parallelism happens only when `cv != "prefit"`. See :term:`Glossary ` for more details. .. versionadded:: 0.24 ensemble : bool, default=True Determines how the calibrator is fitted when `cv` is not `'prefit'`. Ignored if `cv='prefit'`. If `True`, the `base_estimator` is fitted using training data and calibrated using testing data, for each `cv` fold. The final estimator is an ensemble of `n_cv` fitted classifier and calibrator pairs, where `n_cv` is the number of cross-validation folds. The output is the average predicted probabilities of all pairs. If `False`, `cv` is used to compute unbiased predictions, via :func:`~sklearn.model_selection.cross_val_predict`, which are then used for calibration. At prediction time, the classifier used is the `base_estimator` trained on all the data. Note that this method is also internally implemented in :mod:`sklearn.svm` estimators with the `probabilities=True` parameter. .. versionadded:: 0.24 Attributes ---------- classes_ : ndarray of shape (n_classes,) The class labels. n_features_in_ : int Number of features seen during :term:`fit`. Only defined if the underlying base_estimator exposes such an attribute when fit. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Only defined if the underlying base_estimator exposes such an attribute when fit. .. versionadded:: 1.0 calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \ or `ensemble=False`) The list of classifier and calibrator pairs. - When `cv="prefit"`, the fitted `base_estimator` and fitted calibrator. - When `cv` is not "prefit" and `ensemble=True`, `n_cv` fitted `base_estimator` and calibrator pairs. `n_cv` is the number of cross-validation folds. - When `cv` is not "prefit" and `ensemble=False`, the `base_estimator`, fitted on all the data, and fitted calibrator. .. versionchanged:: 0.24 Single calibrated classifier case when `ensemble=False`. See Also -------- calibration_curve : Compute true and predicted probabilities for a calibration curve. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 Examples -------- >>> from sklearn.datasets import make_classification >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.calibration import CalibratedClassifierCV >>> X, y = make_classification(n_samples=100, n_features=2, ... n_redundant=0, random_state=42) >>> base_clf = GaussianNB() >>> calibrated_clf = CalibratedClassifierCV(base_estimator=base_clf, cv=3) >>> calibrated_clf.fit(X, y) CalibratedClassifierCV(base_estimator=GaussianNB(), cv=3) >>> len(calibrated_clf.calibrated_classifiers_) 3 >>> calibrated_clf.predict_proba(X)[:5, :] array([[0.110..., 0.889...], [0.072..., 0.927...], [0.928..., 0.071...], [0.928..., 0.071...], [0.071..., 0.928...]]) >>> from sklearn.model_selection import train_test_split >>> X, y = make_classification(n_samples=100, n_features=2, ... n_redundant=0, random_state=42) >>> X_train, X_calib, y_train, y_calib = train_test_split( ... X, y, random_state=42 ... ) >>> base_clf = GaussianNB() >>> base_clf.fit(X_train, y_train) GaussianNB() >>> calibrated_clf = CalibratedClassifierCV( ... base_estimator=base_clf, ... cv="prefit" ... ) >>> calibrated_clf.fit(X_calib, y_calib) CalibratedClassifierCV(base_estimator=GaussianNB(), cv='prefit') >>> len(calibrated_clf.calibrated_classifiers_) 1 >>> calibrated_clf.predict_proba([[-0.5, 0.5]]) array([[0.936..., 0.063...]]) """ def __init__( self, base_estimator=None, *, method="sigmoid", cv=None, n_jobs=None, ensemble=True, ): self.base_estimator = base_estimator self.method = method self.cv = cv self.n_jobs = n_jobs self.ensemble = ensemble def fit(self, X, y, sample_weight=None): """Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ check_classification_targets(y) X, y = indexable(X, y) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator self.calibrated_classifiers_ = [] if self.cv == "prefit": # `classes_` should be consistent with that of base_estimator check_is_fitted(self.base_estimator, attributes=["classes_"]) self.classes_ = self.base_estimator.classes_ pred_method, method_name = _get_prediction_method(base_estimator) n_classes = len(self.classes_) predictions = _compute_predictions(pred_method, method_name, X, n_classes) calibrated_classifier = _fit_calibrator( base_estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) else: # Set `classes_` using all `y` label_encoder_ = LabelEncoder().fit(y) self.classes_ = label_encoder_.classes_ n_classes = len(self.classes_) # sample_weight checks fit_parameters = signature(base_estimator.fit).parameters supports_sw = "sample_weight" in fit_parameters if sample_weight is not None and not supports_sw: estimator_name = type(base_estimator).__name__ warnings.warn( f"Since {estimator_name} does not appear to accept sample_weight, " "sample weights will only be used for the calibration itself. This " "can be caused by a limitation of the current scikit-learn API. " "See the following issue for more details: " "https://github.com/scikit-learn/scikit-learn/issues/21134. Be " "warned that the result of the calibration is likely to be " "incorrect." ) # Check that each cross-validation fold can have at least one # example per class if isinstance(self.cv, int): n_folds = self.cv elif hasattr(self.cv, "n_splits"): n_folds = self.cv.n_splits else: n_folds = None if n_folds and np.any( [np.sum(y == class_) < n_folds for class_ in self.classes_] ): raise ValueError( f"Requesting {n_folds}-fold " "cross-validation but provided less than " f"{n_folds} examples for at least one class." ) cv = check_cv(self.cv, y, classifier=True) if self.ensemble: parallel = Parallel(n_jobs=self.n_jobs) self.calibrated_classifiers_ = parallel( delayed(_fit_classifier_calibrator_pair)( clone(base_estimator), X, y, train=train, test=test, method=self.method, classes=self.classes_, supports_sw=supports_sw, sample_weight=sample_weight, ) for train, test in cv.split(X, y) ) else: this_estimator = clone(base_estimator) _, method_name = _get_prediction_method(this_estimator) fit_params = ( {"sample_weight": sample_weight} if sample_weight is not None and supports_sw else None ) pred_method = partial( cross_val_predict, estimator=this_estimator, X=X, y=y, cv=cv, method=method_name, n_jobs=self.n_jobs, fit_params=fit_params, ) predictions = _compute_predictions( pred_method, method_name, X, n_classes ) if sample_weight is not None and supports_sw: this_estimator.fit(X, y, sample_weight) else: this_estimator.fit(X, y) calibrated_classifier = _fit_calibrator( this_estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) first_clf = self.calibrated_classifiers_[0].base_estimator if hasattr(first_clf, "n_features_in_"): self.n_features_in_ = first_clf.n_features_in_ if hasattr(first_clf, "feature_names_in_"): self.feature_names_in_ = first_clf.feature_names_in_ return self def predict_proba(self, X): """Calibrated probabilities of classification. This function returns calibrated probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `base_estimator.predict_proba`. Returns ------- C : ndarray of shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self) # Compute the arithmetic mean of the predictions of the calibrated # classifiers mean_proba = np.zeros((_num_samples(X), len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. The predicted class is the class that has the highest probability, and can thus be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `base_estimator.predict`. Returns ------- C : ndarray of shape (n_samples,) The predicted class. """ check_is_fitted(self) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] def _more_tags(self): return { "_xfail_checks": { "check_sample_weights_invariance": ( "Due to the cross-validation and sample ordering, removing a sample" " is not strictly equal to putting is weight to zero. Specific unit" " tests are added for CalibratedClassifierCV specifically." ), } } def _fit_classifier_calibrator_pair( estimator, X, y, train, test, supports_sw, method, classes, sample_weight=None ): """Fit a classifier/calibration pair on a given train/test split. Fit the classifier on the train set, compute its predictions on the test set and use the predictions as input to fit the calibrator along with the test labels. Parameters ---------- estimator : estimator instance Cloned base estimator. X : array-like, shape (n_samples, n_features) Sample data. y : array-like, shape (n_samples,) Targets. train : ndarray, shape (n_train_indicies,) Indices of the training subset. test : ndarray, shape (n_test_indicies,) Indices of the testing subset. supports_sw : bool Whether or not the `estimator` supports sample weights. method : {'sigmoid', 'isotonic'} Method to use for calibration. classes : ndarray, shape (n_classes,) The target classes. sample_weight : array-like, default=None Sample weights for `X`. Returns ------- calibrated_classifier : _CalibratedClassifier instance """ X_train, y_train = _safe_indexing(X, train), _safe_indexing(y, train) X_test, y_test = _safe_indexing(X, test), _safe_indexing(y, test) if supports_sw and sample_weight is not None: sw_train = _safe_indexing(sample_weight, train) sw_test = _safe_indexing(sample_weight, test) else: sw_train = None sw_test = None if supports_sw: estimator.fit(X_train, y_train, sample_weight=sw_train) else: estimator.fit(X_train, y_train) n_classes = len(classes) pred_method, method_name = _get_prediction_method(estimator) predictions = _compute_predictions(pred_method, method_name, X_test, n_classes) calibrated_classifier = _fit_calibrator( estimator, predictions, y_test, classes, method, sample_weight=sw_test ) return calibrated_classifier def _get_prediction_method(clf): """Return prediction method. `decision_function` method of `clf` returned, if it exists, otherwise `predict_proba` method returned. Parameters ---------- clf : Estimator instance Fitted classifier to obtain the prediction method from. Returns ------- prediction_method : callable The prediction method. method_name : str The name of the prediction method. """ if hasattr(clf, "decision_function"): method = getattr(clf, "decision_function") return method, "decision_function" elif hasattr(clf, "predict_proba"): method = getattr(clf, "predict_proba") return method, "predict_proba" else: raise RuntimeError( "'base_estimator' has no 'decision_function' or 'predict_proba' method." ) def _compute_predictions(pred_method, method_name, X, n_classes): """Return predictions for `X` and reshape binary outputs to shape (n_samples, 1). Parameters ---------- pred_method : callable Prediction method. method_name: str Name of the prediction method X : array-like or None Data used to obtain predictions. n_classes : int Number of classes present. Returns ------- predictions : array-like, shape (X.shape[0], len(clf.classes_)) The predictions. Note if there are 2 classes, array is of shape (X.shape[0], 1). """ predictions = pred_method(X=X) if method_name == "decision_function": if predictions.ndim == 1: predictions = predictions[:, np.newaxis] elif method_name == "predict_proba": if n_classes == 2: predictions = predictions[:, 1:] else: # pragma: no cover # this branch should be unreachable. raise ValueError(f"Invalid prediction method: {method_name}") return predictions def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None): """Fit calibrator(s) and return a `_CalibratedClassifier` instance. `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted. However, if `n_classes` equals 2, one calibrator is fitted. Parameters ---------- clf : estimator instance Fitted classifier. predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \ when binary. Raw predictions returned by the un-calibrated base classifier. y : array-like, shape (n_samples,) The targets. classes : ndarray, shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'} The method to use for calibration. sample_weight : ndarray, shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- pipeline : _CalibratedClassifier instance """ Y = label_binarize(y, classes=classes) label_encoder = LabelEncoder().fit(classes) pos_class_indices = label_encoder.transform(clf.classes_) calibrators = [] for class_idx, this_pred in zip(pos_class_indices, predictions.T): if method == "isotonic": calibrator = IsotonicRegression(out_of_bounds="clip") elif method == "sigmoid": calibrator = _SigmoidCalibration() else: raise ValueError( f"'method' should be one of: 'sigmoid' or 'isotonic'. Got {method}." ) calibrator.fit(this_pred, Y[:, class_idx], sample_weight) calibrators.append(calibrator) pipeline = _CalibratedClassifier(clf, calibrators, method=method, classes=classes) return pipeline class _CalibratedClassifier: """Pipeline-like chaining a fitted classifier and its fitted calibrators. Parameters ---------- base_estimator : estimator instance Fitted classifier. calibrators : list of fitted estimator instances List of fitted calibrators (either 'IsotonicRegression' or '_SigmoidCalibration'). The number of calibrators equals the number of classes. However, if there are 2 classes, the list contains only one fitted calibrator. classes : array-like of shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'}, default='sigmoid' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach based on isotonic regression. Attributes ---------- calibrators_ : list of fitted estimator instances Same as `calibrators`. Exposed for backward-compatibility. Use `calibrators` instead. .. deprecated:: 0.24 `calibrators_` is deprecated from 0.24 and will be removed in 1.1 (renaming of 0.26). Use `calibrators` instead. """ def __init__(self, base_estimator, calibrators, *, classes, method="sigmoid"): self.base_estimator = base_estimator self.calibrators = calibrators self.classes = classes self.method = method # TODO: Remove in 1.1 # mypy error: Decorated property not supported @deprecated( # type: ignore "`calibrators_` is deprecated in 0.24 and will be removed in 1.1" "(renaming of 0.26). Use `calibrators` instead." ) @property def calibrators_(self): return self.calibrators def predict_proba(self, X): """Calculate calibrated probabilities. Calculates classification calibrated probabilities for each class, in a one-vs-all manner, for `X`. Parameters ---------- X : ndarray of shape (n_samples, n_features) The sample data. Returns ------- proba : array, shape (n_samples, n_classes) The predicted probabilities. Can be exact zeros. """ n_classes = len(self.classes) pred_method, method_name = _get_prediction_method(self.base_estimator) predictions = _compute_predictions(pred_method, method_name, X, n_classes) label_encoder = LabelEncoder().fit(self.classes) pos_class_indices = label_encoder.transform(self.base_estimator.classes_) proba = np.zeros((_num_samples(X), n_classes)) for class_idx, this_pred, calibrator in zip( pos_class_indices, predictions.T, self.calibrators ): if n_classes == 2: # When binary, `predictions` consists only of predictions for # clf.classes_[1] but `pos_class_indices` = 0 class_idx += 1 proba[:, class_idx] = calibrator.predict(this_pred) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1.0 - proba[:, 1] else: denominator = np.sum(proba, axis=1)[:, np.newaxis] # In the edge case where for each class calibrator returns a null # probability for a given sample, use the uniform distribution # instead. uniform_proba = np.full_like(proba, 1 / n_classes) proba = np.divide( proba, denominator, out=uniform_proba, where=denominator != 0 ) # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(predictions, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ predictions = column_or_1d(predictions) y = column_or_1d(y) F = predictions # F follows Platt's notations # Bayesian priors (see Platt end of section 2.2): # It corresponds to the number of samples, taking into account the # `sample_weight`. mask_negative_samples = y <= 0 if sample_weight is not None: prior0 = (sample_weight[mask_negative_samples]).sum() prior1 = (sample_weight[~mask_negative_samples]).sum() else: prior0 = float(np.sum(mask_negative_samples)) prior1 = y.shape[0] - prior0 T = np.zeros_like(y, dtype=np.float64) T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0) T[y <= 0] = 1.0 / (prior0 + 2.0) T1 = 1.0 - T def objective(AB): # From Platt (beginning of Section 2.2) P = expit(-(AB[0] * F + AB[1])) loss = -(xlogy(T, P) + xlogy(T1, 1.0 - P)) if sample_weight is not None: return (sample_weight * loss).sum() else: return loss.sum() def grad(AB): # gradient of the objective function P = expit(-(AB[0] * F + AB[1])) TEP_minus_T1P = T - P if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(RegressorMixin, BaseEstimator): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like of shape (n_samples,) Data to predict from. Returns ------- T_ : ndarray of shape (n_samples,) The predicted data. """ T = column_or_1d(T) return expit(-(self.a_ * T + self.b_)) def calibration_curve(y_true, y_prob, *, normalize=False, n_bins=5, strategy="uniform"): """Compute true and predicted probabilities for a calibration curve. The method assumes the inputs come from a binary classifier, and discretize the [0, 1] interval into bins. Calibration curves may also be referred to as reliability diagrams. Read more in the :ref:`User Guide `. Parameters ---------- y_true : array-like of shape (n_samples,) True targets. y_prob : array-like of shape (n_samples,) Probabilities of the positive class. normalize : bool, default=False Whether y_prob needs to be normalized into the [0, 1] interval, i.e. is not a proper probability. If True, the smallest value in y_prob is linearly mapped onto 0 and the largest one onto 1. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval. A bigger number requires more data. Bins with no samples (i.e. without corresponding values in `y_prob`) will not be returned, thus the returned arrays may have less than `n_bins` values. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. uniform The bins have identical widths. quantile The bins have the same number of samples and depend on `y_prob`. Returns ------- prob_true : ndarray of shape (n_bins,) or smaller The proportion of samples whose class is the positive class, in each bin (fraction of positives). prob_pred : ndarray of shape (n_bins,) or smaller The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). Examples -------- >>> import numpy as np >>> from sklearn.calibration import calibration_curve >>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1]) >>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.]) >>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3) >>> prob_true array([0. , 0.5, 1. ]) >>> prob_pred array([0.2 , 0.525, 0.85 ]) """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) check_consistent_length(y_true, y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError( "y_prob has values outside [0, 1] and normalize is set to False." ) labels = np.unique(y_true) if len(labels) > 2: raise ValueError( "Only binary classification is supported. Provided labels %s." % labels ) y_true = label_binarize(y_true, classes=labels)[:, 0] if strategy == "quantile": # Determine bin edges by distribution of data quantiles = np.linspace(0, 1, n_bins + 1) bins = np.percentile(y_prob, quantiles * 100) bins[-1] = bins[-1] + 1e-8 elif strategy == "uniform": bins = np.linspace(0.0, 1.0 + 1e-8, n_bins + 1) else: raise ValueError( "Invalid entry to 'strategy' input. Strategy " "must be either 'quantile' or 'uniform'." ) binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = bin_true[nonzero] / bin_total[nonzero] prob_pred = bin_sums[nonzero] / bin_total[nonzero] return prob_true, prob_pred class CalibrationDisplay: """Calibration curve (also known as reliability diagram) visualization. It is recommended to use :func:`~sklearn.calibration.CalibrationDisplay.from_estimator` or :func:`~sklearn.calibration.CalibrationDisplay.from_predictions` to create a `CalibrationDisplay`. All parameters are stored as attributes. Read more about calibration in the :ref:`User Guide ` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ----------- prob_true : ndarray of shape (n_bins,) The proportion of samples whose class is the positive class (fraction of positives), in each bin. prob_pred : ndarray of shape (n_bins,) The mean predicted probability in each bin. y_prob : ndarray of shape (n_samples,) Probability estimates for the positive class, for each sample. estimator_name : str, default=None Name of estimator. If None, the estimator name is not shown. Attributes ---------- line_ : matplotlib Artist Calibration curve. ax_ : matplotlib Axes Axes with calibration curve. figure_ : matplotlib Figure Figure containing the curve. See Also -------- calibration_curve : Compute true and predicted probabilities for a calibration curve. CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. Examples -------- >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import calibration_curve, CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> y_prob = clf.predict_proba(X_test)[:, 1] >>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10) >>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob) >>> disp.plot() <...> """ def __init__(self, prob_true, prob_pred, y_prob, *, estimator_name=None): self.prob_true = prob_true self.prob_pred = prob_pred self.y_prob = y_prob self.estimator_name = estimator_name def plot(self, *, ax=None, name=None, ref_line=True, **kwargs): """Plot visualization. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Parameters ---------- ax : Matplotlib Axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. name : str, default=None Name for labeling curve. If `None`, use `estimator_name` if not `None`, otherwise no labeling is shown. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay` Object that stores computed values. """ check_matplotlib_support("CalibrationDisplay.plot") import matplotlib.pyplot as plt if ax is None: fig, ax = plt.subplots() name = self.estimator_name if name is None else name line_kwargs = {} if name is not None: line_kwargs["label"] = name line_kwargs.update(**kwargs) ref_line_label = "Perfectly calibrated" existing_ref_line = ref_line_label in ax.get_legend_handles_labels()[1] if ref_line and not existing_ref_line: ax.plot([0, 1], [0, 1], "k:", label=ref_line_label) self.line_ = ax.plot(self.prob_pred, self.prob_true, "s-", **line_kwargs)[0] # We always have to show the legend for at least the reference line ax.legend(loc="lower right") ax.set(xlabel="Mean predicted probability", ylabel="Fraction of positives") self.ax_ = ax self.figure_ = ax.figure return self @classmethod def from_estimator( cls, estimator, X, y, *, n_bins=5, strategy="uniform", name=None, ref_line=True, ax=None, **kwargs, ): """Plot calibration curve using a binary classifier and data. A calibration curve, also known as a reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide ` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. The classifier must have a :term:`predict_proba` method. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Binary target values. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. name : str, default=None Name for labeling curve. If `None`, the name of the estimator is used. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test) >>> plt.show() """ method_name = f"{cls.__name__}.from_estimator" check_matplotlib_support(method_name) if not is_classifier(estimator): raise ValueError("'estimator' should be a fitted classifier.") # FIXME: `pos_label` should not be set to None # We should allow any int or string in `calibration_curve`. y_prob, _ = _get_response( X, estimator, response_method="predict_proba", pos_label=None ) name = name if name is not None else estimator.__class__.__name__ return cls.from_predictions( y, y_prob, n_bins=n_bins, strategy=strategy, name=name, ref_line=ref_line, ax=ax, **kwargs, ) @classmethod def from_predictions( cls, y_true, y_prob, *, n_bins=5, strategy="uniform", name=None, ref_line=True, ax=None, **kwargs, ): """Plot calibration curve using true labels and predicted probabilities. Calibration curve, also known as reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide ` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- y_true : array-like of shape (n_samples,) True labels. y_prob : array-like of shape (n_samples,) The predicted probabilities of the positive class. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. name : str, default=None Name for labeling curve. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> y_prob = clf.predict_proba(X_test)[:, 1] >>> disp = CalibrationDisplay.from_predictions(y_test, y_prob) >>> plt.show() """ method_name = f"{cls.__name__}.from_estimator" check_matplotlib_support(method_name) prob_true, prob_pred = calibration_curve( y_true, y_prob, n_bins=n_bins, strategy=strategy ) name = name if name is not None else "Classifier" disp = cls( prob_true=prob_true, prob_pred=prob_pred, y_prob=y_prob, estimator_name=name ) return disp.plot(ax=ax, ref_line=ref_line, **kwargs)