""" Tests for the birch clustering algorithm. """ from scipy import sparse import numpy as np import pytest from sklearn.cluster.tests.common import generate_clustered_data from sklearn.cluster import Birch from sklearn.cluster import AgglomerativeClustering from sklearn.datasets import make_blobs from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model import ElasticNet from sklearn.metrics import pairwise_distances_argmin, v_measure_score from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal def test_n_samples_leaves_roots(): # Sanity check for the number of samples in leaves and roots X, y = make_blobs(n_samples=10) brc = Birch() brc.fit(X) n_samples_root = sum([sc.n_samples_ for sc in brc.root_.subclusters_]) n_samples_leaves = sum( [sc.n_samples_ for leaf in brc._get_leaves() for sc in leaf.subclusters_] ) assert n_samples_leaves == X.shape[0] assert n_samples_root == X.shape[0] def test_partial_fit(): # Test that fit is equivalent to calling partial_fit multiple times X, y = make_blobs(n_samples=100) brc = Birch(n_clusters=3) brc.fit(X) brc_partial = Birch(n_clusters=None) brc_partial.partial_fit(X[:50]) brc_partial.partial_fit(X[50:]) assert_array_almost_equal(brc_partial.subcluster_centers_, brc.subcluster_centers_) # Test that same global labels are obtained after calling partial_fit # with None brc_partial.set_params(n_clusters=3) brc_partial.partial_fit(None) assert_array_equal(brc_partial.subcluster_labels_, brc.subcluster_labels_) def test_birch_predict(): # Test the predict method predicts the nearest centroid. rng = np.random.RandomState(0) X = generate_clustered_data(n_clusters=3, n_features=3, n_samples_per_cluster=10) # n_samples * n_samples_per_cluster shuffle_indices = np.arange(30) rng.shuffle(shuffle_indices) X_shuffle = X[shuffle_indices, :] brc = Birch(n_clusters=4, threshold=1.0) brc.fit(X_shuffle) centroids = brc.subcluster_centers_ assert_array_equal(brc.labels_, brc.predict(X_shuffle)) nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids) assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0) def test_n_clusters(): # Test that n_clusters param works properly X, y = make_blobs(n_samples=100, centers=10) brc1 = Birch(n_clusters=10) brc1.fit(X) assert len(brc1.subcluster_centers_) > 10 assert len(np.unique(brc1.labels_)) == 10 # Test that n_clusters = Agglomerative Clustering gives # the same results. gc = AgglomerativeClustering(n_clusters=10) brc2 = Birch(n_clusters=gc) brc2.fit(X) assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_) assert_array_equal(brc1.labels_, brc2.labels_) # Test that the wrong global clustering step raises an Error. clf = ElasticNet() brc3 = Birch(n_clusters=clf) with pytest.raises(ValueError): brc3.fit(X) # Test that a small number of clusters raises a warning. brc4 = Birch(threshold=10000.0) with pytest.warns(ConvergenceWarning): brc4.fit(X) def test_sparse_X(): # Test that sparse and dense data give same results X, y = make_blobs(n_samples=100, centers=10) brc = Birch(n_clusters=10) brc.fit(X) csr = sparse.csr_matrix(X) brc_sparse = Birch(n_clusters=10) brc_sparse.fit(csr) assert_array_equal(brc.labels_, brc_sparse.labels_) assert_array_almost_equal(brc.subcluster_centers_, brc_sparse.subcluster_centers_) def test_partial_fit_second_call_error_checks(): # second partial fit calls will error when n_features is not consistent # with the first call X, y = make_blobs(n_samples=100) brc = Birch(n_clusters=3) brc.partial_fit(X, y) msg = "X has 1 features, but Birch is expecting 2 features" with pytest.raises(ValueError, match=msg): brc.partial_fit(X[:, [0]], y) def check_branching_factor(node, branching_factor): subclusters = node.subclusters_ assert branching_factor >= len(subclusters) for cluster in subclusters: if cluster.child_: check_branching_factor(cluster.child_, branching_factor) def test_branching_factor(): # Test that nodes have at max branching_factor number of subclusters X, y = make_blobs() branching_factor = 9 # Purposefully set a low threshold to maximize the subclusters. brc = Birch(n_clusters=None, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) brc = Birch(n_clusters=3, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) # Raises error when branching_factor is set to one. brc = Birch(n_clusters=None, branching_factor=1, threshold=0.01) with pytest.raises(ValueError): brc.fit(X) def check_threshold(birch_instance, threshold): """Use the leaf linked list for traversal""" current_leaf = birch_instance.dummy_leaf_.next_leaf_ while current_leaf: subclusters = current_leaf.subclusters_ for sc in subclusters: assert threshold >= sc.radius current_leaf = current_leaf.next_leaf_ def test_threshold(): # Test that the leaf subclusters have a threshold lesser than radius X, y = make_blobs(n_samples=80, centers=4) brc = Birch(threshold=0.5, n_clusters=None) brc.fit(X) check_threshold(brc, 0.5) brc = Birch(threshold=5.0, n_clusters=None) brc.fit(X) check_threshold(brc, 5.0) def test_birch_n_clusters_long_int(): # Check that birch supports n_clusters with np.int64 dtype, for instance # coming from np.arange. #16484 X, _ = make_blobs(random_state=0) n_clusters = np.int64(5) Birch(n_clusters=n_clusters).fit(X) # TODO: Remove in 1.2 @pytest.mark.parametrize("attribute", ["fit_", "partial_fit_"]) def test_birch_fit_attributes_deprecated(attribute): """Test that fit_ and partial_fit_ attributes are deprecated.""" msg = f"`{attribute}` is deprecated in 1.0 and will be removed in 1.2" X, y = make_blobs(n_samples=10) brc = Birch().fit(X, y) with pytest.warns(FutureWarning, match=msg): getattr(brc, attribute)