""" Tests for sklearn.cluster._feature_agglomeration """ # Authors: Sergul Aydore 2017 import numpy as np import pytest from sklearn.cluster import FeatureAgglomeration from sklearn.utils._testing import assert_array_almost_equal def test_feature_agglomeration(): n_clusters = 1 X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features) agglo_mean = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.mean) agglo_median = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.median) with pytest.warns(None) as record: agglo_mean.fit(X) assert not len(record) with pytest.warns(None) as record: agglo_median.fit(X) assert not len(record) assert np.size(np.unique(agglo_mean.labels_)) == n_clusters assert np.size(np.unique(agglo_median.labels_)) == n_clusters assert np.size(agglo_mean.labels_) == X.shape[1] assert np.size(agglo_median.labels_) == X.shape[1] # Test transform Xt_mean = agglo_mean.transform(X) Xt_median = agglo_median.transform(X) assert Xt_mean.shape[1] == n_clusters assert Xt_median.shape[1] == n_clusters assert Xt_mean == np.array([1 / 3.0]) assert Xt_median == np.array([0.0]) # Test inverse transform X_full_mean = agglo_mean.inverse_transform(Xt_mean) X_full_median = agglo_median.inverse_transform(Xt_median) assert np.unique(X_full_mean[0]).size == n_clusters assert np.unique(X_full_median[0]).size == n_clusters assert_array_almost_equal(agglo_mean.transform(X_full_mean), Xt_mean) assert_array_almost_equal(agglo_median.transform(X_full_median), Xt_median)