from os import environ from functools import wraps import platform import sys import pytest from threadpoolctl import threadpool_limits from _pytest.doctest import DoctestItem from sklearn.utils import _IS_32BIT from sklearn.utils._openmp_helpers import _openmp_effective_n_threads from sklearn.externals import _pilutil from sklearn._min_dependencies import PYTEST_MIN_VERSION from sklearn.utils.fixes import np_version, parse_version from sklearn.datasets import fetch_20newsgroups from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import fetch_california_housing from sklearn.datasets import fetch_covtype from sklearn.datasets import fetch_kddcup99 from sklearn.datasets import fetch_olivetti_faces from sklearn.datasets import fetch_rcv1 if parse_version(pytest.__version__) < parse_version(PYTEST_MIN_VERSION): raise ImportError( "Your version of pytest is too old, you should have " "at least pytest >= {} installed.".format(PYTEST_MIN_VERSION) ) dataset_fetchers = { "fetch_20newsgroups_fxt": fetch_20newsgroups, "fetch_20newsgroups_vectorized_fxt": fetch_20newsgroups_vectorized, "fetch_california_housing_fxt": fetch_california_housing, "fetch_covtype_fxt": fetch_covtype, "fetch_kddcup99_fxt": fetch_kddcup99, "fetch_olivetti_faces_fxt": fetch_olivetti_faces, "fetch_rcv1_fxt": fetch_rcv1, } def _fetch_fixture(f): """Fetch dataset (download if missing and requested by environment).""" download_if_missing = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0" @wraps(f) def wrapped(*args, **kwargs): kwargs["download_if_missing"] = download_if_missing try: return f(*args, **kwargs) except IOError as e: if str(e) != "Data not found and `download_if_missing` is False": raise pytest.skip("test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0") return pytest.fixture(lambda: wrapped) # Adds fixtures for fetching data fetch_20newsgroups_fxt = _fetch_fixture(fetch_20newsgroups) fetch_20newsgroups_vectorized_fxt = _fetch_fixture(fetch_20newsgroups_vectorized) fetch_california_housing_fxt = _fetch_fixture(fetch_california_housing) fetch_covtype_fxt = _fetch_fixture(fetch_covtype) fetch_kddcup99_fxt = _fetch_fixture(fetch_kddcup99) fetch_olivetti_faces_fxt = _fetch_fixture(fetch_olivetti_faces) fetch_rcv1_fxt = _fetch_fixture(fetch_rcv1) def pytest_collection_modifyitems(config, items): """Called after collect is completed. Parameters ---------- config : pytest config items : list of collected items """ run_network_tests = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0" skip_network = pytest.mark.skip( reason="test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0" ) # download datasets during collection to avoid thread unsafe behavior # when running pytest in parallel with pytest-xdist dataset_features_set = set(dataset_fetchers) datasets_to_download = set() for item in items: if not hasattr(item, "fixturenames"): continue item_fixtures = set(item.fixturenames) dataset_to_fetch = item_fixtures & dataset_features_set if not dataset_to_fetch: continue if run_network_tests: datasets_to_download |= dataset_to_fetch else: # network tests are skipped item.add_marker(skip_network) # Only download datasets on the first worker spawned by pytest-xdist # to avoid thread unsafe behavior. If pytest-xdist is not used, we still # download before tests run. worker_id = environ.get("PYTEST_XDIST_WORKER", "gw0") if worker_id == "gw0" and run_network_tests: for name in datasets_to_download: dataset_fetchers[name]() for item in items: # FeatureHasher is not compatible with PyPy if ( item.name.endswith(("_hash.FeatureHasher", "text.HashingVectorizer")) and platform.python_implementation() == "PyPy" ): marker = pytest.mark.skip( reason="FeatureHasher is not compatible with PyPy" ) item.add_marker(marker) # Known failure on with GradientBoostingClassifier on ARM64 elif ( item.name.endswith("GradientBoostingClassifier") and platform.machine() == "aarch64" ): marker = pytest.mark.xfail( reason=( "know failure. See " "https://github.com/scikit-learn/scikit-learn/issues/17797" # noqa ) ) item.add_marker(marker) # numpy changed the str/repr formatting of numpy arrays in 1.14. We want to # run doctests only for numpy >= 1.14. skip_doctests = False try: import matplotlib # noqa except ImportError: skip_doctests = True reason = "matplotlib is required to run the doctests" try: if np_version < parse_version("1.14"): reason = "doctests are only run for numpy >= 1.14" skip_doctests = True elif _IS_32BIT: reason = "doctest are only run when the default numpy int is 64 bits." skip_doctests = True elif sys.platform.startswith("win32"): reason = ( "doctests are not run for Windows because numpy arrays " "repr is inconsistent across platforms." ) skip_doctests = True except ImportError: pass # Normally doctest has the entire module's scope. Here we set globs to an empty dict # to remove the module's scope: # https://docs.python.org/3/library/doctest.html#what-s-the-execution-context for item in items: if isinstance(item, DoctestItem): item.dtest.globs = {} if skip_doctests: skip_marker = pytest.mark.skip(reason=reason) for item in items: if isinstance(item, DoctestItem): # work-around an internal error with pytest if adding a skip # mark to a doctest in a contextmanager, see # https://github.com/pytest-dev/pytest/issues/8796 for more # details. if item.name != "sklearn._config.config_context": item.add_marker(skip_marker) elif not _pilutil.pillow_installed: skip_marker = pytest.mark.skip(reason="pillow (or PIL) not installed!") for item in items: if item.name in [ "sklearn.feature_extraction.image.PatchExtractor", "sklearn.feature_extraction.image.extract_patches_2d", ]: item.add_marker(skip_marker) @pytest.fixture(scope="function") def pyplot(): """Setup and teardown fixture for matplotlib. This fixture checks if we can import matplotlib. If not, the tests will be skipped. Otherwise, we close the figures before and after running the functions. Returns ------- pyplot : module The ``matplotlib.pyplot`` module. """ pyplot = pytest.importorskip("matplotlib.pyplot") pyplot.close("all") yield pyplot pyplot.close("all") def pytest_runtest_setup(item): """Set the number of openmp threads based on the number of workers xdist is using to prevent oversubscription. Parameters ---------- item : pytest item item to be processed """ xdist_worker_count = environ.get("PYTEST_XDIST_WORKER_COUNT") if xdist_worker_count is None: # returns if pytest-xdist is not installed return else: xdist_worker_count = int(xdist_worker_count) openmp_threads = _openmp_effective_n_threads() threads_per_worker = max(openmp_threads // xdist_worker_count, 1) threadpool_limits(threads_per_worker, user_api="openmp") def pytest_configure(config): # Use matplotlib agg backend during the tests including doctests try: import matplotlib matplotlib.use("agg") except ImportError: pass