""" Testing for Elliptic Envelope algorithm (sklearn.covariance.elliptic_envelope). """ import numpy as np import pytest from sklearn.covariance import EllipticEnvelope from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.exceptions import NotFittedError def test_elliptic_envelope(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) with pytest.raises(NotFittedError): clf.predict(X) with pytest.raises(NotFittedError): clf.decision_function(X) clf.fit(X) y_pred = clf.predict(X) scores = clf.score_samples(X) decisions = clf.decision_function(X) assert_array_almost_equal(scores, -clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal( clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.0 ) assert sum(y_pred == -1) == sum(decisions < 0) def test_score_samples(): X_train = [[1, 1], [1, 2], [2, 1]] clf1 = EllipticEnvelope(contamination=0.2).fit(X_train) clf2 = EllipticEnvelope().fit(X_train) assert_array_equal( clf1.score_samples([[2.0, 2.0]]), clf1.decision_function([[2.0, 2.0]]) + clf1.offset_, ) assert_array_equal( clf2.score_samples([[2.0, 2.0]]), clf2.decision_function([[2.0, 2.0]]) + clf2.offset_, ) assert_array_equal( clf1.score_samples([[2.0, 2.0]]), clf2.score_samples([[2.0, 2.0]]) )