""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau # 2010 Fabian Pedregosa # 2010 Olivier Grisel # License: BSD 3 clause import csv import hashlib import gzip import shutil from collections import namedtuple from os import environ, listdir, makedirs from os.path import expanduser, isdir, join, splitext from importlib import resources from ..utils import Bunch from ..utils import check_random_state from ..utils import check_pandas_support from ..utils.deprecation import deprecated import numpy as np from urllib.request import urlretrieve DATA_MODULE = "sklearn.datasets.data" DESCR_MODULE = "sklearn.datasets.descr" IMAGES_MODULE = "sklearn.datasets.images" RemoteFileMetadata = namedtuple("RemoteFileMetadata", ["filename", "url", "checksum"]) def get_data_home(data_home=None) -> str: """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. Parameters ---------- data_home : str, default=None The path to scikit-learn data directory. If `None`, the default path is `~/sklearn_learn_data`. """ if data_home is None: data_home = environ.get("SCIKIT_LEARN_DATA", join("~", "scikit_learn_data")) data_home = expanduser(data_home) makedirs(data_home, exist_ok=True) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache. Parameters ---------- data_home : str, default=None The path to scikit-learn data directory. If `None`, the default path is `~/sklearn_learn_data`. """ data_home = get_data_home(data_home) shutil.rmtree(data_home) def _convert_data_dataframe( caller_name, data, target, feature_names, target_names, sparse_data=False ): pd = check_pandas_support("{} with as_frame=True".format(caller_name)) if not sparse_data: data_df = pd.DataFrame(data, columns=feature_names) else: data_df = pd.DataFrame.sparse.from_spmatrix(data, columns=feature_names) target_df = pd.DataFrame(target, columns=target_names) combined_df = pd.concat([data_df, target_df], axis=1) X = combined_df[feature_names] y = combined_df[target_names] if y.shape[1] == 1: y = y.iloc[:, 0] return combined_df, X, y def load_files( container_path, *, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error="strict", random_state=0, ): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the :mod`~sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in :mod:`~sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide `. Parameters ---------- container_path : str Path to the main folder holding one subfolder per category. description : str, default=None A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : list of str, default=None If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : bool, default=True Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. shuffle : bool, default=True Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. encoding : str, default=None If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error : {'strict', 'ignore', 'replace'}, default='strict' Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. random_state : int, RandomState instance or None, default=0 Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : list of str Only present when `load_content=True`. The raw text data to learn. target : ndarray The target labels (integer index). target_names : list The names of target classes. DESCR : str The full description of the dataset. filenames: ndarray The filenames holding the dataset. """ target = [] target_names = [] filenames = [] folders = [ f for f in sorted(listdir(container_path)) if isdir(join(container_path, f)) ] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, "rb") as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch( data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description, ) return Bunch( filenames=filenames, target_names=target_names, target=target, DESCR=description ) def load_csv_data( data_file_name, *, data_module=DATA_MODULE, descr_file_name=None, descr_module=DESCR_MODULE, ): """Loads `data_file_name` from `data_module with `importlib.resources`. Parameters ---------- data_file_name : str Name of csv file to be loaded from `data_module/data_file_name`. For example `'wine_data.csv'`. data_module : str or module, default='sklearn.datasets.data' Module where data lives. The default is `'sklearn.datasets.data'`. descr_file_name : str, default=None Name of rst file to be loaded from `descr_module/descr_file_name`. For example `'wine_data.rst'`. See also :func:`load_descr`. If not None, also returns the corresponding description of the dataset. descr_module : str or module, default='sklearn.datasets.descr' Module where `descr_file_name` lives. See also :func:`load_descr`. The default is `'sklearn.datasets.descr'`. Returns ------- data : ndarray of shape (n_samples, n_features) A 2D array with each row representing one sample and each column representing the features of a given sample. target : ndarry of shape (n_samples,) A 1D array holding target variables for all the samples in `data`. For example target[0] is the target variable for data[0]. target_names : ndarry of shape (n_samples,) A 1D array containing the names of the classifications. For example target_names[0] is the name of the target[0] class. descr : str, optional Description of the dataset (the content of `descr_file_name`). Only returned if `descr_file_name` is not None. """ with resources.open_text(data_module, data_file_name) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float64) target[i] = np.asarray(ir[-1], dtype=int) if descr_file_name is None: return data, target, target_names else: assert descr_module is not None descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name) return data, target, target_names, descr def load_gzip_compressed_csv_data( data_file_name, *, data_module=DATA_MODULE, descr_file_name=None, descr_module=DESCR_MODULE, encoding="utf-8", **kwargs, ): """Loads gzip-compressed `data_file_name` from `data_module` with `importlib.resources`. 1) Open resource file with `importlib.resources.open_binary` 2) Decompress file obj with `gzip.open` 3) Load decompressed data with `np.loadtxt` Parameters ---------- data_file_name : str Name of gzip-compressed csv file (`'*.csv.gz'`) to be loaded from `data_module/data_file_name`. For example `'diabetes_data.csv.gz'`. data_module : str or module, default='sklearn.datasets.data' Module where data lives. The default is `'sklearn.datasets.data'`. descr_file_name : str, default=None Name of rst file to be loaded from `descr_module/descr_file_name`. For example `'wine_data.rst'`. See also :func:`load_descr`. If not None, also returns the corresponding description of the dataset. descr_module : str or module, default='sklearn.datasets.descr' Module where `descr_file_name` lives. See also :func:`load_descr`. The default is `'sklearn.datasets.descr'`. encoding : str, default="utf-8" Name of the encoding that the gzip-decompressed file will be decoded with. The default is 'utf-8'. **kwargs : dict, optional Keyword arguments to be passed to `np.loadtxt`; e.g. delimiter=','. Returns ------- data : ndarray of shape (n_samples, n_features) A 2D array with each row representing one sample and each column representing the features and/or target of a given sample. descr : str, optional Description of the dataset (the content of `descr_file_name`). Only returned if `descr_file_name` is not None. """ with resources.open_binary(data_module, data_file_name) as compressed_file: compressed_file = gzip.open(compressed_file, mode="rt", encoding=encoding) data = np.loadtxt(compressed_file, **kwargs) if descr_file_name is None: return data else: assert descr_module is not None descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name) return data, descr def load_descr(descr_file_name, *, descr_module=DESCR_MODULE): """Load `descr_file_name` from `descr_module` with `importlib.resources`. Parameters ---------- descr_file_name : str, default=None Name of rst file to be loaded from `descr_module/descr_file_name`. For example `'wine_data.rst'`. See also :func:`load_descr`. If not None, also returns the corresponding description of the dataset. descr_module : str or module, default='sklearn.datasets.descr' Module where `descr_file_name` lives. See also :func:`load_descr`. The default is `'sklearn.datasets.descr'`. Returns ------- fdescr : str Content of `descr_file_name`. """ fdescr = resources.read_text(descr_module, descr_file_name) return fdescr def load_wine(*, return_X_y=False, as_frame=False): """Load and return the wine dataset (classification). .. versionadded:: 0.18 The wine dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class [59,71,48] Samples total 178 Dimensionality 13 Features real, positive ================= ============== Read more in the :ref:`User Guide `. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (178, 13) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (178,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. frame: DataFrame of shape (178, 14) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. (data, target) : tuple if ``return_X_y`` is True The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit standard format from: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data Examples -------- Let's say you are interested in the samples 10, 80, and 140, and want to know their class name. >>> from sklearn.datasets import load_wine >>> data = load_wine() >>> data.target[[10, 80, 140]] array([0, 1, 2]) >>> list(data.target_names) ['class_0', 'class_1', 'class_2'] """ data, target, target_names, fdescr = load_csv_data( data_file_name="wine_data.csv", descr_file_name="wine_data.rst" ) feature_names = [ "alcohol", "malic_acid", "ash", "alcalinity_of_ash", "magnesium", "total_phenols", "flavanoids", "nonflavanoid_phenols", "proanthocyanins", "color_intensity", "hue", "od280/od315_of_diluted_wines", "proline", ] frame = None target_columns = [ "target", ] if as_frame: frame, data, target = _convert_data_dataframe( "load_wine", data, target, feature_names, target_columns ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names, ) def load_iris(*, return_X_y=False, as_frame=False): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide `. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (150, 4) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (150,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. frame: DataFrame of shape (150, 5) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. filename: str The path to the location of the data. .. versionadded:: 0.20 (data, target) : tuple if ``return_X_y`` is True A tuple of two ndarray. The first containing a 2D array of shape (n_samples, n_features) with each row representing one sample and each column representing the features. The second ndarray of shape (n_samples,) containing the target samples. .. versionadded:: 0.18 Notes ----- .. versionchanged:: 0.20 Fixed two wrong data points according to Fisher's paper. The new version is the same as in R, but not as in the UCI Machine Learning Repository. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ data_file_name = "iris.csv" data, target, target_names, fdescr = load_csv_data( data_file_name=data_file_name, descr_file_name="iris.rst" ) feature_names = [ "sepal length (cm)", "sepal width (cm)", "petal length (cm)", "petal width (cm)", ] frame = None target_columns = [ "target", ] if as_frame: frame, data, target = _convert_data_dataframe( "load_iris", data, target, feature_names, target_columns ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names, filename=data_file_name, data_module=DATA_MODULE, ) def load_breast_cancer(*, return_X_y=False, as_frame=False): """Load and return the breast cancer wisconsin dataset (classification). The breast cancer dataset is a classic and very easy binary classification dataset. ================= ============== Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive ================= ============== Read more in the :ref:`User Guide `. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (569, 30) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (569,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. frame: DataFrame of shape (569, 31) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. filename: str The path to the location of the data. .. versionadded:: 0.20 (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is downloaded from: https://goo.gl/U2Uwz2 Examples -------- Let's say you are interested in the samples 10, 50, and 85, and want to know their class name. >>> from sklearn.datasets import load_breast_cancer >>> data = load_breast_cancer() >>> data.target[[10, 50, 85]] array([0, 1, 0]) >>> list(data.target_names) ['malignant', 'benign'] """ data_file_name = "breast_cancer.csv" data, target, target_names, fdescr = load_csv_data( data_file_name=data_file_name, descr_file_name="breast_cancer.rst" ) feature_names = np.array( [ "mean radius", "mean texture", "mean perimeter", "mean area", "mean smoothness", "mean compactness", "mean concavity", "mean concave points", "mean symmetry", "mean fractal dimension", "radius error", "texture error", "perimeter error", "area error", "smoothness error", "compactness error", "concavity error", "concave points error", "symmetry error", "fractal dimension error", "worst radius", "worst texture", "worst perimeter", "worst area", "worst smoothness", "worst compactness", "worst concavity", "worst concave points", "worst symmetry", "worst fractal dimension", ] ) frame = None target_columns = [ "target", ] if as_frame: frame, data, target = _convert_data_dataframe( "load_breast_cancer", data, target, feature_names, target_columns ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names, filename=data_file_name, data_module=DATA_MODULE, ) def load_digits(*, n_class=10, return_X_y=False, as_frame=False): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide `. Parameters ---------- n_class : int, default=10 The number of classes to return. Between 0 and 10. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (1797, 64) The flattened data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (1797,) The classification target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. target_names: list The names of target classes. .. versionadded:: 0.20 frame: DataFrame of shape (1797, 65) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 images: {ndarray} of shape (1797, 8, 8) The raw image data. DESCR: str The full description of the dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 This is a copy of the test set of the UCI ML hand-written digits datasets https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.matshow(digits.images[0]) <...> >>> plt.show() """ data, fdescr = load_gzip_compressed_csv_data( data_file_name="digits.csv.gz", descr_file_name="digits.rst", delimiter="," ) target = data[:, -1].astype(int, copy=False) flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] feature_names = [ "pixel_{}_{}".format(row_idx, col_idx) for row_idx in range(8) for col_idx in range(8) ] frame = None target_columns = [ "target", ] if as_frame: frame, flat_data, target = _convert_data_dataframe( "load_digits", flat_data, target, feature_names, target_columns ) if return_X_y: return flat_data, target return Bunch( data=flat_data, target=target, frame=frame, feature_names=feature_names, target_names=np.arange(10), images=images, DESCR=fdescr, ) def load_diabetes(*, return_X_y=False, as_frame=False): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== .. note:: The meaning of each feature (i.e. `feature_names`) might be unclear (especially for `ltg`) as the documentation of the original dataset is not explicit. We provide information that seems correct in regard with the scientific literature in this field of research. Read more in the :ref:`User Guide `. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (442, 10) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (442,) The regression target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. frame: DataFrame of shape (442, 11) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. data_filename: str The path to the location of the data. target_filename: str The path to the location of the target. (data, target) : tuple if ``return_X_y`` is True Returns a tuple of two ndarray of shape (n_samples, n_features) A 2D array with each row representing one sample and each column representing the features and/or target of a given sample. .. versionadded:: 0.18 """ data_filename = "diabetes_data.csv.gz" target_filename = "diabetes_target.csv.gz" data = load_gzip_compressed_csv_data(data_filename) target = load_gzip_compressed_csv_data(target_filename) fdescr = load_descr("diabetes.rst") feature_names = ["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s6"] frame = None target_columns = [ "target", ] if as_frame: frame, data, target = _convert_data_dataframe( "load_diabetes", data, target, feature_names, target_columns ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, DESCR=fdescr, feature_names=feature_names, data_filename=data_filename, target_filename=target_filename, data_module=DATA_MODULE, ) def load_linnerud(*, return_X_y=False, as_frame=False): """Load and return the physical exercise Linnerud dataset. This dataset is suitable for multi-ouput regression tasks. ============== ============================ Samples total 20 Dimensionality 3 (for both data and target) Features integer Targets integer ============== ============================ Read more in the :ref:`User Guide `. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (20, 3) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, dataframe} of shape (20, 3) The regression targets. If `as_frame=True`, `target` will be a pandas DataFrame. feature_names: list The names of the dataset columns. target_names: list The names of the target columns. frame: DataFrame of shape (20, 6) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. data_filename: str The path to the location of the data. target_filename: str The path to the location of the target. .. versionadded:: 0.20 (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 """ data_filename = "linnerud_exercise.csv" target_filename = "linnerud_physiological.csv" # Read header and data with resources.open_text(DATA_MODULE, data_filename) as f: header_exercise = f.readline().split() f.seek(0) # reset file obj data_exercise = np.loadtxt(f, skiprows=1) with resources.open_text(DATA_MODULE, target_filename) as f: header_physiological = f.readline().split() f.seek(0) # reset file obj data_physiological = np.loadtxt(f, skiprows=1) fdescr = load_descr("linnerud.rst") frame = None if as_frame: (frame, data_exercise, data_physiological) = _convert_data_dataframe( "load_linnerud", data_exercise, data_physiological, header_exercise, header_physiological, ) if return_X_y: return data_exercise, data_physiological return Bunch( data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, frame=frame, DESCR=fdescr, data_filename=data_filename, target_filename=target_filename, data_module=DATA_MODULE, ) @deprecated( r"""`load_boston` is deprecated in 1.0 and will be removed in 1.2. The Boston housing prices dataset has an ethical problem. You can refer to the documentation of this function for further details. The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning. In this special case, you can fetch the dataset from the original source:: import pandas as pd import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] Alternative datasets include the California housing dataset (i.e. :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing dataset. You can load the datasets as follows:: from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() for the California housing dataset and:: from sklearn.datasets import fetch_openml housing = fetch_openml(name="house_prices", as_frame=True) for the Ames housing dataset. """ ) def load_boston(*, return_X_y=False): r"""Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Read more in the :ref:`User Guide `. .. deprecated:: 1.0 This function is deprecated in 1.0 and will be removed in 1.2. See the warning message below for further details regarding the alternative datasets. .. warning:: The Boston housing prices dataset has an ethical problem: as investigated in [1]_, the authors of this dataset engineered a non-invertible variable "B" assuming that racial self-segregation had a positive impact on house prices [2]_. Furthermore the goal of the research that led to the creation of this dataset was to study the impact of air quality but it did not give adequate demonstration of the validity of this assumption. The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning. In this special case, you can fetch the dataset from the original source:: import pandas as pd # doctest: +SKIP import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] Alternative datasets include the California housing dataset [3]_ (i.e. :func:`~sklearn.datasets.fetch_california_housing`) and Ames housing dataset [4]_. You can load the datasets as follows:: from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() for the California housing dataset and:: from sklearn.datasets import fetch_openml housing = fetch_openml(name="house_prices", as_frame=True) # noqa for the Ames housing dataset. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : ndarray of shape (506, 13) The data matrix. target : ndarray of shape (506,) The regression target. filename : str The physical location of boston csv dataset. .. versionadded:: 0.20 DESCR : str The full description of the dataset. feature_names : ndarray The names of features (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 Notes ----- .. versionchanged:: 0.20 Fixed a wrong data point at [445, 0]. References ---------- .. [1] `Racist data destruction? M Carlisle, `_ .. [2] `Harrison Jr, David, and Daniel L. Rubinfeld. "Hedonic housing prices and the demand for clean air." Journal of environmental economics and management 5.1 (1978): 81-102. `_ .. [3] `California housing dataset `_ .. [4] `Ames housing dataset `_ Examples -------- >>> import warnings >>> from sklearn.datasets import load_boston >>> with warnings.catch_warnings(): ... # You should probably not use this dataset. ... warnings.filterwarnings("ignore") ... X, y = load_boston(return_X_y=True) >>> print(X.shape) (506, 13) """ # TODO: once the deprecation period is over, implement a module level # `__getattr__` function in`sklearn.datasets` to raise an exception with # an informative error message at import time instead of just removing # load_boston. The goal is to avoid having beginners that copy-paste code # from numerous books and tutorials that use this dataset loader get # a confusing ImportError when trying to learn scikit-learn. # See: https://www.python.org/dev/peps/pep-0562/ descr_text = load_descr("boston_house_prices.rst") data_file_name = "boston_house_prices.csv" with resources.open_text(DATA_MODULE, data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float64) target[i] = np.asarray(d[-1], dtype=np.float64) if return_X_y: return data, target return Bunch( data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text, filename=data_file_name, data_module=DATA_MODULE, ) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Read more in the :ref:`User Guide `. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. images : list of ndarray of shape (427, 640, 3) The two sample image. filenames : list The filenames for the images. DESCR : str The full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # import PIL only when needed from ..externals._pilutil import imread descr = load_descr("README.txt", descr_module=IMAGES_MODULE) filenames, images = [], [] for filename in sorted(resources.contents(IMAGES_MODULE)): if filename.endswith(".jpg"): filenames.append(filename) with resources.open_binary(IMAGES_MODULE, filename) as image_file: image = imread(image_file) images.append(image) return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Read more in the :ref:`User Guide `. Parameters ---------- image_name : {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img : 3D array The image as a numpy array: height x width x color Examples -------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index] def _pkl_filepath(*args, **kwargs): """Return filename for Python 3 pickles args[-1] is expected to be the ".pkl" filename. For compatibility with older scikit-learn versions, a suffix is inserted before the extension. _pkl_filepath('/path/to/folder', 'filename.pkl') returns '/path/to/folder/filename_py3.pkl' """ py3_suffix = kwargs.get("py3_suffix", "_py3") basename, ext = splitext(args[-1]) basename += py3_suffix new_args = args[:-1] + (basename + ext,) return join(*new_args) def _sha256(path): """Calculate the sha256 hash of the file at path.""" sha256hash = hashlib.sha256() chunk_size = 8192 with open(path, "rb") as f: while True: buffer = f.read(chunk_size) if not buffer: break sha256hash.update(buffer) return sha256hash.hexdigest() def _fetch_remote(remote, dirname=None): """Helper function to download a remote dataset into path Fetch a dataset pointed by remote's url, save into path using remote's filename and ensure its integrity based on the SHA256 Checksum of the downloaded file. Parameters ---------- remote : RemoteFileMetadata Named tuple containing remote dataset meta information: url, filename and checksum dirname : str Directory to save the file to. Returns ------- file_path: str Full path of the created file. """ file_path = remote.filename if dirname is None else join(dirname, remote.filename) urlretrieve(remote.url, file_path) checksum = _sha256(file_path) if remote.checksum != checksum: raise IOError( "{} has an SHA256 checksum ({}) " "differing from expected ({}), " "file may be corrupted.".format(file_path, checksum, remote.checksum) ) return file_path