"""Caching loader for the 20 newsgroups text classification dataset. The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. """ # Copyright (c) 2011 Olivier Grisel # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp import joblib from . import get_data_home from . import load_files from ._base import _convert_data_dataframe from ._base import _pkl_filepath from ._base import _fetch_remote from ._base import RemoteFileMetadata from ._base import load_descr from ..feature_extraction.text import CountVectorizer from .. import preprocessing from ..utils import check_random_state, Bunch logger = logging.getLogger(__name__) # The original data can be found at: # https://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz ARCHIVE = RemoteFileMetadata( filename="20news-bydate.tar.gz", url="https://ndownloader.figshare.com/files/5975967", checksum="8f1b2514ca22a5ade8fbb9cfa5727df95fa587f4c87b786e15c759fa66d95610", ) CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def _download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) logger.info("Downloading dataset from %s (14 MB)", ARCHIVE.url) archive_path = _fetch_remote(ARCHIVE, dirname=target_dir) logger.debug("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict( train=load_files(train_path, encoding="latin1"), test=load_files(test_path, encoding="latin1"), ) compressed_content = codecs.encode(pickle.dumps(cache), "zlib_codec") with open(cache_path, "wb") as f: f.write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. Parameters ---------- text : str The text from which to remove the signature block. """ _before, _blankline, after = text.partition("\n\n") return after _QUOTE_RE = re.compile( r"(writes in|writes:|wrote:|says:|said:" r"|^In article|^Quoted from|^\||^>)" ) def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) Parameters ---------- text : str The text from which to remove the signature block. """ good_lines = [line for line in text.split("\n") if not _QUOTE_RE.search(line)] return "\n".join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). Parameters ---------- text : str The text from which to remove the signature block. """ lines = text.strip().split("\n") for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip("-") == "": break if line_num > 0: return "\n".join(lines[:line_num]) else: return text def fetch_20newsgroups( *, data_home=None, subset="train", categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True, return_X_y=False, ): """Load the filenames and data from the 20 newsgroups dataset \ (classification). Download it if necessary. ================= ========== Classes 20 Samples total 18846 Dimensionality 1 Features text ================= ========== Read more in the :ref:`User Guide <20newsgroups_dataset>`. Parameters ---------- data_home : str, default=None Specify a download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. subset : {'train', 'test', 'all'}, default='train' Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. categories : array-like, dtype=str, default=None If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle : bool, default=True Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. remove : tuple, default=() May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. download_if_missing : bool, default=True If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. return_X_y : bool, default=False If True, returns `(data.data, data.target)` instead of a Bunch object. .. versionadded:: 0.22 Returns ------- bunch : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : list of shape (n_samples,) The data list to learn. target: ndarray of shape (n_samples,) The target labels. filenames: list of shape (n_samples,) The path to the location of the data. DESCR: str The full description of the dataset. target_names: list of shape (n_classes,) The names of target classes. (data, target) : tuple if `return_X_y=True` .. versionadded:: 0.22 """ data_home = get_data_home(data_home=data_home) cache_path = _pkl_filepath(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, "rb") as f: compressed_content = f.read() uncompressed_content = codecs.decode(compressed_content, "zlib_codec") cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * "_") print("Cache loading failed") print(80 * "_") print(e) if cache is None: if download_if_missing: logger.info("Downloading 20news dataset. This may take a few minutes.") cache = _download_20newsgroups( target_dir=twenty_home, cache_path=cache_path ) else: raise IOError("20Newsgroups dataset not found") if subset in ("train", "test"): data = cache[subset] elif subset == "all": data_lst = list() target = list() filenames = list() for subset in ("train", "test"): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset ) fdescr = load_descr("twenty_newsgroups.rst") data.DESCR = fdescr if "headers" in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if "footers" in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if "quotes" in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() if return_X_y: return data.data, data.target return data def fetch_20newsgroups_vectorized( *, subset="train", remove=(), data_home=None, download_if_missing=True, return_X_y=False, normalize=True, as_frame=False, ): """Load and vectorize the 20 newsgroups dataset (classification). Download it if necessary. This is a convenience function; the transformation is done using the default settings for :class:`~sklearn.feature_extraction.text.CountVectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom :class:`~sklearn.feature_extraction.text.CountVectorizer`, :class:`~sklearn.feature_extraction.text.HashingVectorizer`, :class:`~sklearn.feature_extraction.text.TfidfTransformer` or :class:`~sklearn.feature_extraction.text.TfidfVectorizer`. The resulting counts are normalized using :func:`sklearn.preprocessing.normalize` unless normalize is set to False. ================= ========== Classes 20 Samples total 18846 Dimensionality 130107 Features real ================= ========== Read more in the :ref:`User Guide <20newsgroups_dataset>`. Parameters ---------- subset : {'train', 'test', 'all'}, default='train' Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. remove : tuple, default=() May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. data_home : str, default=None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing : bool, default=True If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. return_X_y : bool, default=False If True, returns ``(data.data, data.target)`` instead of a Bunch object. .. versionadded:: 0.20 normalize : bool, default=True If True, normalizes each document's feature vector to unit norm using :func:`sklearn.preprocessing.normalize`. .. versionadded:: 0.22 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string, or categorical). The target is a pandas DataFrame or Series depending on the number of `target_columns`. .. versionadded:: 0.24 Returns ------- bunch : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data: {sparse matrix, dataframe} of shape (n_samples, n_features) The input data matrix. If ``as_frame`` is `True`, ``data`` is a pandas DataFrame with sparse columns. target: {ndarray, series} of shape (n_samples,) The target labels. If ``as_frame`` is `True`, ``target`` is a pandas Series. target_names: list of shape (n_classes,) The names of target classes. DESCR: str The full description of the dataset. frame: dataframe of shape (n_samples, n_features + 1) Only present when `as_frame=True`. Pandas DataFrame with ``data`` and ``target``. .. versionadded:: 0.24 (data, target) : tuple if ``return_X_y`` is True `data` and `target` would be of the format defined in the `Bunch` description above. .. versionadded:: 0.20 """ data_home = get_data_home(data_home=data_home) filebase = "20newsgroup_vectorized" if remove: filebase += "remove-" + "-".join(remove) target_file = _pkl_filepath(data_home, filebase + ".pkl") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups( data_home=data_home, subset="train", categories=None, shuffle=True, random_state=12, remove=remove, download_if_missing=download_if_missing, ) data_test = fetch_20newsgroups( data_home=data_home, subset="test", categories=None, shuffle=True, random_state=12, remove=remove, download_if_missing=download_if_missing, ) if os.path.exists(target_file): try: X_train, X_test, feature_names = joblib.load(target_file) except ValueError as e: raise ValueError( f"The cached dataset located in {target_file} was fetched " "with an older scikit-learn version and it is not compatible " "with the scikit-learn version imported. You need to " f"manually delete the file: {target_file}." ) from e else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() feature_names = vectorizer.get_feature_names_out() joblib.dump((X_train, X_test, feature_names), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats if normalize: X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) preprocessing.normalize(X_train, copy=False) preprocessing.normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError( "%r is not a valid subset: should be one of ['train', 'test', 'all']" % subset ) fdescr = load_descr("twenty_newsgroups.rst") frame = None target_name = ["category_class"] if as_frame: frame, data, target = _convert_data_dataframe( "fetch_20newsgroups_vectorized", data, target, feature_names, target_names=target_name, sparse_data=True, ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, target_names=target_names, feature_names=feature_names, DESCR=fdescr, )