"""Test the 20news downloader, if the data is available, or if specifically requested via environment variable (e.g. for travis cron job).""" from functools import partial from unittest.mock import patch import pytest import numpy as np import scipy.sparse as sp from sklearn.datasets.tests.test_common import check_as_frame from sklearn.datasets.tests.test_common import check_pandas_dependency_message from sklearn.datasets.tests.test_common import check_return_X_y from sklearn.utils._testing import assert_allclose_dense_sparse from sklearn.preprocessing import normalize def test_20news(fetch_20newsgroups_fxt): data = fetch_20newsgroups_fxt(subset="all", shuffle=False) assert data.DESCR.startswith(".. _20newsgroups_dataset:") # Extract a reduced dataset data2cats = fetch_20newsgroups_fxt( subset="all", categories=data.target_names[-1:-3:-1], shuffle=False ) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert data2cats.target_names == data.target_names[-2:] # Assert that we have only 0 and 1 as labels assert np.unique(data2cats.target).tolist() == [0, 1] # Check that the number of filenames is consistent with data/target assert len(data2cats.filenames) == len(data2cats.target) assert len(data2cats.filenames) == len(data2cats.data) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert entry1 == entry2 # check that return_X_y option X, y = fetch_20newsgroups_fxt(subset="all", shuffle=False, return_X_y=True) assert len(X) == len(data.data) assert y.shape == data.target.shape def test_20news_length_consistency(fetch_20newsgroups_fxt): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ # Extract the full dataset data = fetch_20newsgroups_fxt(subset="all") assert len(data["data"]) == len(data.data) assert len(data["target"]) == len(data.target) assert len(data["filenames"]) == len(data.filenames) def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt): # test subset = train bunch = fetch_20newsgroups_vectorized_fxt(subset="train") assert sp.isspmatrix_csr(bunch.data) assert bunch.data.shape == (11314, 130107) assert bunch.target.shape[0] == 11314 assert bunch.data.dtype == np.float64 assert bunch.DESCR.startswith(".. _20newsgroups_dataset:") # test subset = test bunch = fetch_20newsgroups_vectorized_fxt(subset="test") assert sp.isspmatrix_csr(bunch.data) assert bunch.data.shape == (7532, 130107) assert bunch.target.shape[0] == 7532 assert bunch.data.dtype == np.float64 assert bunch.DESCR.startswith(".. _20newsgroups_dataset:") # test return_X_y option fetch_func = partial(fetch_20newsgroups_vectorized_fxt, subset="test") check_return_X_y(bunch, fetch_func) # test subset = all bunch = fetch_20newsgroups_vectorized_fxt(subset="all") assert sp.isspmatrix_csr(bunch.data) assert bunch.data.shape == (11314 + 7532, 130107) assert bunch.target.shape[0] == 11314 + 7532 assert bunch.data.dtype == np.float64 assert bunch.DESCR.startswith(".. _20newsgroups_dataset:") def test_20news_normalization(fetch_20newsgroups_vectorized_fxt): X = fetch_20newsgroups_vectorized_fxt(normalize=False) X_ = fetch_20newsgroups_vectorized_fxt(normalize=True) X_norm = X_["data"][:100] X = X["data"][:100] assert_allclose_dense_sparse(X_norm, normalize(X)) assert np.allclose(np.linalg.norm(X_norm.todense(), axis=1), 1) def test_20news_as_frame(fetch_20newsgroups_vectorized_fxt): pd = pytest.importorskip("pandas") bunch = fetch_20newsgroups_vectorized_fxt(as_frame=True) check_as_frame(bunch, fetch_20newsgroups_vectorized_fxt) frame = bunch.frame assert frame.shape == (11314, 130108) assert all([isinstance(col, pd.SparseDtype) for col in bunch.data.dtypes]) # Check a small subset of features for expected_feature in [ "beginner", "beginners", "beginning", "beginnings", "begins", "begley", "begone", ]: assert expected_feature in frame.keys() assert "category_class" in frame.keys() assert bunch.target.name == "category_class" def test_as_frame_no_pandas(fetch_20newsgroups_vectorized_fxt, hide_available_pandas): check_pandas_dependency_message(fetch_20newsgroups_vectorized_fxt) def test_outdated_pickle(fetch_20newsgroups_vectorized_fxt): with patch("os.path.exists") as mock_is_exist: with patch("joblib.load") as mock_load: # mock that the dataset was cached mock_is_exist.return_value = True # mock that we have an outdated pickle with only X and y returned mock_load.return_value = ("X", "y") err_msg = "The cached dataset located in" with pytest.raises(ValueError, match=err_msg): fetch_20newsgroups_vectorized_fxt(as_frame=True)