import os import shutil import tempfile import warnings from pickle import loads from pickle import dumps from functools import partial from importlib import resources import pytest import numpy as np from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_boston from sklearn.datasets import load_wine from sklearn.datasets._base import ( load_csv_data, load_gzip_compressed_csv_data, ) from sklearn.utils import Bunch from sklearn.utils._testing import SkipTest from sklearn.datasets.tests.test_common import check_as_frame from sklearn.externals._pilutil import pillow_installed from sklearn.utils import IS_PYPY def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) @pytest.fixture(scope="module") def data_home(tmpdir_factory): tmp_file = str(tmpdir_factory.mktemp("scikit_learn_data_home_test")) yield tmp_file _remove_dir(tmp_file) @pytest.fixture(scope="module") def load_files_root(tmpdir_factory): tmp_file = str(tmpdir_factory.mktemp("scikit_learn_load_files_test")) yield tmp_file _remove_dir(tmp_file) @pytest.fixture def test_category_dir_1(load_files_root): test_category_dir1 = tempfile.mkdtemp(dir=load_files_root) sample_file = tempfile.NamedTemporaryFile(dir=test_category_dir1, delete=False) sample_file.write(b"Hello World!\n") sample_file.close() yield str(test_category_dir1) _remove_dir(test_category_dir1) @pytest.fixture def test_category_dir_2(load_files_root): test_category_dir2 = tempfile.mkdtemp(dir=load_files_root) yield str(test_category_dir2) _remove_dir(test_category_dir2) def test_data_home(data_home): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=data_home) assert data_home == data_home assert os.path.exists(data_home) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert not os.path.exists(data_home) # if the folder is missing it will be created again data_home = get_data_home(data_home=data_home) assert os.path.exists(data_home) def test_default_empty_load_files(load_files_root): res = load_files(load_files_root) assert len(res.filenames) == 0 assert len(res.target_names) == 0 assert res.DESCR is None def test_default_load_files(test_category_dir_1, test_category_dir_2, load_files_root): if IS_PYPY: pytest.xfail("[PyPy] fails due to string containing NUL characters") res = load_files(load_files_root) assert len(res.filenames) == 1 assert len(res.target_names) == 2 assert res.DESCR is None assert res.data == [b"Hello World!\n"] def test_load_files_w_categories_desc_and_encoding( test_category_dir_1, test_category_dir_2, load_files_root ): if IS_PYPY: pytest.xfail("[PyPy] fails due to string containing NUL characters") category = os.path.abspath(test_category_dir_1).split("/").pop() res = load_files( load_files_root, description="test", categories=category, encoding="utf-8" ) assert len(res.filenames) == 1 assert len(res.target_names) == 1 assert res.DESCR == "test" assert res.data == ["Hello World!\n"] def test_load_files_wo_load_content( test_category_dir_1, test_category_dir_2, load_files_root ): res = load_files(load_files_root, load_content=False) assert len(res.filenames) == 1 assert len(res.target_names) == 2 assert res.DESCR is None assert res.get("data") is None @pytest.mark.parametrize( "filename, expected_n_samples, expected_n_features, expected_target_names", [ ("wine_data.csv", 178, 13, ["class_0", "class_1", "class_2"]), ("iris.csv", 150, 4, ["setosa", "versicolor", "virginica"]), ("breast_cancer.csv", 569, 30, ["malignant", "benign"]), ], ) def test_load_csv_data( filename, expected_n_samples, expected_n_features, expected_target_names ): actual_data, actual_target, actual_target_names = load_csv_data(filename) assert actual_data.shape[0] == expected_n_samples assert actual_data.shape[1] == expected_n_features assert actual_target.shape[0] == expected_n_samples np.testing.assert_array_equal(actual_target_names, expected_target_names) def test_load_csv_data_with_descr(): data_file_name = "iris.csv" descr_file_name = "iris.rst" res_without_descr = load_csv_data(data_file_name=data_file_name) res_with_descr = load_csv_data( data_file_name=data_file_name, descr_file_name=descr_file_name ) assert len(res_with_descr) == 4 assert len(res_without_descr) == 3 np.testing.assert_array_equal(res_with_descr[0], res_without_descr[0]) np.testing.assert_array_equal(res_with_descr[1], res_without_descr[1]) np.testing.assert_array_equal(res_with_descr[2], res_without_descr[2]) assert res_with_descr[-1].startswith(".. _iris_dataset:") @pytest.mark.parametrize( "filename, kwargs, expected_shape", [ ("diabetes_data.csv.gz", {}, [442, 10]), ("diabetes_target.csv.gz", {}, [442]), ("digits.csv.gz", {"delimiter": ","}, [1797, 65]), ], ) def test_load_gzip_compressed_csv_data(filename, kwargs, expected_shape): actual_data = load_gzip_compressed_csv_data(filename, **kwargs) assert actual_data.shape == tuple(expected_shape) def test_load_gzip_compressed_csv_data_with_descr(): data_file_name = "diabetes_target.csv.gz" descr_file_name = "diabetes.rst" expected_data = load_gzip_compressed_csv_data(data_file_name=data_file_name) actual_data, descr = load_gzip_compressed_csv_data( data_file_name=data_file_name, descr_file_name=descr_file_name, ) np.testing.assert_array_equal(actual_data, expected_data) assert descr.startswith(".. _diabetes_dataset:") def test_load_sample_images(): try: res = load_sample_images() assert len(res.images) == 2 assert len(res.filenames) == 2 images = res.images # assert is china image assert np.all(images[0][0, 0, :] == np.array([174, 201, 231], dtype=np.uint8)) # assert is flower image assert np.all(images[1][0, 0, :] == np.array([2, 19, 13], dtype=np.uint8)) assert res.DESCR except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_sample_image(): try: china = load_sample_image("china.jpg") assert china.dtype == "uint8" assert china.shape == (427, 640, 3) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): if pillow_installed: with pytest.raises(AttributeError): load_sample_image("blop.jpg") else: warnings.warn("Could not load sample images, PIL is not available.") @pytest.mark.filterwarnings("ignore:Function load_boston is deprecated") @pytest.mark.parametrize( "loader_func, data_shape, target_shape, n_target, has_descr, filenames", [ (load_breast_cancer, (569, 30), (569,), 2, True, ["filename"]), (load_wine, (178, 13), (178,), 3, True, []), (load_iris, (150, 4), (150,), 3, True, ["filename"]), ( load_linnerud, (20, 3), (20, 3), 3, True, ["data_filename", "target_filename"], ), (load_diabetes, (442, 10), (442,), None, True, []), (load_digits, (1797, 64), (1797,), 10, True, []), (partial(load_digits, n_class=9), (1617, 64), (1617,), 10, True, []), (load_boston, (506, 13), (506,), None, True, ["filename"]), ], ) def test_loader(loader_func, data_shape, target_shape, n_target, has_descr, filenames): bunch = loader_func() assert isinstance(bunch, Bunch) assert bunch.data.shape == data_shape assert bunch.target.shape == target_shape if hasattr(bunch, "feature_names"): assert len(bunch.feature_names) == data_shape[1] if n_target is not None: assert len(bunch.target_names) == n_target if has_descr: assert bunch.DESCR if filenames: assert "data_module" in bunch assert all( [ f in bunch and resources.is_resource(bunch["data_module"], bunch[f]) for f in filenames ] ) @pytest.mark.parametrize( "loader_func, data_dtype, target_dtype", [ (load_breast_cancer, np.float64, int), (load_diabetes, np.float64, np.float64), (load_digits, np.float64, int), (load_iris, np.float64, int), (load_linnerud, np.float64, np.float64), (load_wine, np.float64, int), ], ) def test_toy_dataset_frame_dtype(loader_func, data_dtype, target_dtype): default_result = loader_func() check_as_frame( default_result, loader_func, expected_data_dtype=data_dtype, expected_target_dtype=target_dtype, ) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert bunch_from_pkl["x"] == bunch_from_pkl.x def test_bunch_pickle_generated_with_0_16_and_read_with_0_17(): bunch = Bunch(key="original") # This reproduces a problem when Bunch pickles have been created # with scikit-learn 0.16 and are read with 0.17. Basically there # is a surprising behaviour because reading bunch.key uses # bunch.__dict__ (which is non empty for 0.16 Bunch objects) # whereas assigning into bunch.key uses bunch.__setattr__. See # https://github.com/scikit-learn/scikit-learn/issues/6196 for # more details bunch.__dict__["key"] = "set from __dict__" bunch_from_pkl = loads(dumps(bunch)) # After loading from pickle the __dict__ should have been ignored assert bunch_from_pkl.key == "original" assert bunch_from_pkl["key"] == "original" # Making sure that changing the attr does change the value # associated with __getitem__ as well bunch_from_pkl.key = "changed" assert bunch_from_pkl.key == "changed" assert bunch_from_pkl["key"] == "changed" def test_bunch_dir(): # check that dir (important for autocomplete) shows attributes data = load_iris() assert "data" in dir(data) # FIXME: to be removed in 1.2 def test_load_boston_warning(): """Check that we raise the ethical warning when loading `load_boston`.""" warn_msg = "The Boston housing prices dataset has an ethical problem" with pytest.warns(FutureWarning, match=warn_msg): load_boston() @pytest.mark.filterwarnings("ignore:Function load_boston is deprecated") def test_load_boston_alternative(): pd = pytest.importorskip("pandas") if os.environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "1": raise SkipTest( "This test requires an internet connection to fetch the dataset." ) boston_sklearn = load_boston() data_url = "http://lib.stat.cmu.edu/datasets/boston" try: raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None) except ConnectionError as e: pytest.xfail(f"The dataset can't be downloaded. Got exception: {e}") data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] np.testing.assert_allclose(data, boston_sklearn.data) np.testing.assert_allclose(target, boston_sklearn.target)