""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle import math from collections import defaultdict import itertools from itertools import combinations from itertools import product from typing import Dict, Any import numpy as np from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from scipy.special import comb import pytest import joblib from numpy.testing import assert_allclose from sklearn.dummy import DummyRegressor from sklearn.metrics import mean_poisson_deviance from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import _convert_container from sklearn.utils._testing import ignore_warnings from sklearn.utils._testing import skip_if_no_parallel from sklearn.utils.fixes import parse_version from sklearn.exceptions import NotFittedError from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.validation import check_random_state from sklearn.metrics import mean_squared_error from sklearn.tree._classes import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # Larger classification sample used for testing feature importances X_large, y_large = datasets.make_classification( n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0, ) # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # Make regression dataset X_reg, y_reg = datasets.make_regression(n_samples=500, n_features=10, random_state=1) # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) # Get the default backend in joblib to test parallelism and interaction with # different backends DEFAULT_JOBLIB_BACKEND = joblib.parallel.get_active_backend()[0].__class__ FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS: Dict[str, Any] = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) FOREST_CLASSIFIERS_REGRESSORS: Dict[str, Any] = FOREST_CLASSIFIERS.copy() FOREST_CLASSIFIERS_REGRESSORS.update(FOREST_REGRESSORS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert 10 == len(clf) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert 10 == len(clf) # also test apply leaf_indices = clf.apply(X) assert leaf_indices.shape == (len(X), clf.n_estimators) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_classification_toy(name): check_classification_toy(name) def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with criterion %s and score = %f" % (criterion, score) clf = ForestClassifier( n_estimators=10, criterion=criterion, max_features=2, random_state=1 ) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.5, "Failed with criterion %s and score = %f" % (criterion, score) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) @pytest.mark.parametrize("criterion", ("gini", "entropy")) def test_iris(name, criterion): check_iris_criterion(name, criterion) def check_regression_criterion(name, criterion): # Check consistency on regression dataset. ForestRegressor = FOREST_REGRESSORS[name] reg = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) reg.fit(X_reg, y_reg) score = reg.score(X_reg, y_reg) assert ( score > 0.93 ), "Failed with max_features=None, criterion %s and score = %f" % ( criterion, score, ) reg = ForestRegressor( n_estimators=5, criterion=criterion, max_features=6, random_state=1 ) reg.fit(X_reg, y_reg) score = reg.score(X_reg, y_reg) assert score > 0.92, "Failed with max_features=6, criterion %s and score = %f" % ( criterion, score, ) @pytest.mark.parametrize("name", FOREST_REGRESSORS) @pytest.mark.parametrize( "criterion", ("squared_error", "absolute_error", "friedman_mse") ) def test_regression(name, criterion): check_regression_criterion(name, criterion) def test_poisson_vs_mse(): """Test that random forest with poisson criterion performs better than mse for a poisson target.""" rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 500, 10 X = datasets.make_low_rank_matrix( n_samples=n_train + n_test, n_features=n_features, random_state=rng ) X = np.abs(X) X /= np.max(np.abs(X), axis=0) # We create a log-linear Poisson model coef = rng.uniform(low=-4, high=1, size=n_features) y = rng.poisson(lam=np.exp(X @ coef)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=n_test, random_state=rng ) forest_poi = RandomForestRegressor( criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng ) forest_mse = RandomForestRegressor( criterion="squared_error", min_samples_leaf=10, max_features="sqrt", random_state=rng, ) forest_poi.fit(X_train, y_train) forest_mse.fit(X_train, y_train) dummy = DummyRegressor(strategy="mean").fit(X_train, y_train) for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]: metric_poi = mean_poisson_deviance(y, forest_poi.predict(X)) # squared_error forest might produce non-positive predictions => clip # If y = 0 for those, the poisson deviance gets too good. # If we drew more samples, we would eventually get y > 0 and the # poisson deviance would explode, i.e. be undefined. Therefore, we do # not clip to a tiny value like 1e-15, but to 0.1. This acts like a # mild penalty to the non-positive predictions. metric_mse = mean_poisson_deviance( y, np.clip(forest_mse.predict(X), 1e-6, None) ) metric_dummy = mean_poisson_deviance(y, dummy.predict(X)) # As squared_error might correctly predict 0 in train set, its train # score can be better than Poisson. This is no longer the case for the # test set. But keep the above comment for clipping in mind. if val == "test": assert metric_poi < metric_mse assert metric_poi < metric_dummy @pytest.mark.parametrize("criterion", ("poisson", "squared_error")) def test_balance_property_random_forest(criterion): """ "Test that sum(y_pred)==sum(y_true) on the training set.""" rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 500, 10 X = datasets.make_low_rank_matrix( n_samples=n_train + n_test, n_features=n_features, random_state=rng ) coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) y = rng.poisson(lam=np.exp(X @ coef)) reg = RandomForestRegressor( criterion=criterion, n_estimators=10, bootstrap=False, random_state=rng ) reg.fit(X, y) assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y)) def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert not hasattr(r, "classes_") assert not hasattr(r, "n_classes_") r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert not hasattr(r, "classes_") assert not hasattr(r, "n_classes_") @pytest.mark.parametrize("name", FOREST_REGRESSORS) def test_regressor_attributes(name): check_regressor_attributes(name) def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier( n_estimators=10, random_state=1, max_features=1, max_depth=1 ) clf.fit(iris.data, iris.target) assert_array_almost_equal( np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0]) ) assert_array_almost_equal( clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)) ) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_probability(name): check_probability(name) def check_importances(name, criterion, dtype, tolerance): # cast as dype X = X_large.astype(dtype, copy=False) y = y_large.astype(dtype, copy=False) ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=10, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ # The forest estimator can detect that only the first 3 features of the # dataset are informative: n_important = np.sum(importances > 0.1) assert importances.shape[0] == 10 assert n_important == 3 assert np.all(importances[:3] > 0.1) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert np.all(importances >= 0.0) for scale in [0.5, 100]: est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert np.abs(importances - importances_bis).mean() < tolerance @pytest.mark.parametrize("dtype", (np.float64, np.float32)) @pytest.mark.parametrize( "name, criterion", itertools.chain( product(FOREST_CLASSIFIERS, ["gini", "entropy"]), product(FOREST_REGRESSORS, ["squared_error", "friedman_mse", "absolute_error"]), ), ) def test_importances(dtype, name, criterion): tolerance = 0.01 if name in FOREST_REGRESSORS and criterion == "absolute_error": tolerance = 0.05 check_importances(name, criterion, dtype, tolerance) def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0.0 for count in np.bincount(samples): p = 1.0 * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0.0 for k in range(n_features): # Weight of each B of size k coef = 1.0 / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += ( coef * (1.0 * n_samples_b / n_samples) # P(B=b) * ( entropy(y_) - sum( [ entropy(c) * len(c) / n_samples_b for c in children ] ) ) ) return imp data = np.array( [ [0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0], ] ) X, y = np.array(data[:, :7], dtype=bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier( n_estimators=500, max_features=1, criterion="entropy", random_state=0 ).fit(X, y) importances = ( sum( tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_ ) / clf.n_estimators ) # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert np.abs(true_importances - importances).mean() < 0.01 @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_unfitted_feature_importances(name): err_msg = ( "This {} instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this estimator.".format(name) ) with pytest.raises(NotFittedError, match=err_msg): getattr(FOREST_ESTIMATORS[name](), "feature_importances_") @pytest.mark.parametrize("ForestClassifier", FOREST_CLASSIFIERS.values()) @pytest.mark.parametrize("X_type", ["array", "sparse_csr", "sparse_csc"]) @pytest.mark.parametrize( "X, y, lower_bound_accuracy", [ ( *datasets.make_classification(n_samples=300, n_classes=2, random_state=0), 0.9, ), ( *datasets.make_classification( n_samples=1000, n_classes=3, n_informative=6, random_state=0 ), 0.65, ), ( iris.data, iris.target * 2 + 1, 0.65, ), ( *datasets.make_multilabel_classification(n_samples=300, random_state=0), 0.18, ), ], ) def test_forest_classifier_oob(ForestClassifier, X, y, X_type, lower_bound_accuracy): """Check that OOB score is close to score on a test set.""" X = _convert_container(X, constructor_name=X_type) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0, ) classifier = ForestClassifier( n_estimators=40, bootstrap=True, oob_score=True, random_state=0, ) assert not hasattr(classifier, "oob_score_") assert not hasattr(classifier, "oob_decision_function_") classifier.fit(X_train, y_train) test_score = classifier.score(X_test, y_test) assert abs(test_score - classifier.oob_score_) <= 0.1 assert classifier.oob_score_ >= lower_bound_accuracy assert hasattr(classifier, "oob_score_") assert not hasattr(classifier, "oob_prediction_") assert hasattr(classifier, "oob_decision_function_") if y.ndim == 1: expected_shape = (X_train.shape[0], len(set(y))) else: expected_shape = (X_train.shape[0], len(set(y[:, 0])), y.shape[1]) assert classifier.oob_decision_function_.shape == expected_shape @pytest.mark.parametrize("ForestRegressor", FOREST_REGRESSORS.values()) @pytest.mark.parametrize("X_type", ["array", "sparse_csr", "sparse_csc"]) @pytest.mark.parametrize( "X, y, lower_bound_r2", [ ( *datasets.make_regression( n_samples=500, n_features=10, n_targets=1, random_state=0 ), 0.7, ), ( *datasets.make_regression( n_samples=500, n_features=10, n_targets=2, random_state=0 ), 0.55, ), ], ) def test_forest_regressor_oob(ForestRegressor, X, y, X_type, lower_bound_r2): """Check that forest-based regressor provide an OOB score close to the score on a test set.""" X = _convert_container(X, constructor_name=X_type) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0, ) regressor = ForestRegressor( n_estimators=50, bootstrap=True, oob_score=True, random_state=0, ) assert not hasattr(regressor, "oob_score_") assert not hasattr(regressor, "oob_prediction_") regressor.fit(X_train, y_train) test_score = regressor.score(X_test, y_test) assert abs(test_score - regressor.oob_score_) <= 0.1 assert regressor.oob_score_ >= lower_bound_r2 assert hasattr(regressor, "oob_score_") assert hasattr(regressor, "oob_prediction_") assert not hasattr(regressor, "oob_decision_function_") if y.ndim == 1: expected_shape = (X_train.shape[0],) else: expected_shape = (X_train.shape[0], y.ndim) assert regressor.oob_prediction_.shape == expected_shape @pytest.mark.parametrize("ForestEstimator", FOREST_CLASSIFIERS_REGRESSORS.values()) def test_forest_oob_warning(ForestEstimator): """Check that a warning is raised when not enough estimator and the OOB estimates will be inaccurate.""" estimator = ForestEstimator( n_estimators=1, oob_score=True, bootstrap=True, random_state=0, ) with pytest.warns(UserWarning, match="Some inputs do not have OOB scores"): estimator.fit(iris.data, iris.target) @pytest.mark.parametrize("ForestEstimator", FOREST_CLASSIFIERS_REGRESSORS.values()) @pytest.mark.parametrize( "X, y, params, err_msg", [ ( iris.data, iris.target, {"oob_score": True, "bootstrap": False}, "Out of bag estimation only available if bootstrap=True", ), ( iris.data, rng.randint(low=0, high=5, size=(iris.data.shape[0], 2)), {"oob_score": True, "bootstrap": True}, "The type of target cannot be used to compute OOB estimates", ), ], ) def test_forest_oob_error(ForestEstimator, X, y, params, err_msg): estimator = ForestEstimator(**params) with pytest.raises(ValueError, match=err_msg): estimator.fit(X, y) @pytest.mark.parametrize("oob_score", [True, False]) def test_random_trees_embedding_raise_error_oob(oob_score): with pytest.raises(TypeError, match="got an unexpected keyword argument"): RandomTreesEmbedding(oob_score=oob_score) with pytest.raises(NotImplementedError, match="OOB score not supported"): RandomTreesEmbedding()._set_oob_score_and_attributes(X, y) def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {"n_estimators": (1, 2), "max_depth": (1, 2)}) clf.fit(iris.data, iris.target) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_gridsearch(name): # Check that base trees can be grid-searched. check_gridsearch(name) def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert len(forest) == 10 forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) def test_parallel(name): if name in FOREST_CLASSIFIERS: X = iris.data y = iris.target elif name in FOREST_REGRESSORS: X = X_reg y = y_reg check_parallel(name, X, y) def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert type(obj2) == obj.__class__ score2 = obj2.score(X, y) assert score == score2 @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) def test_pickle(name): if name in FOREST_CLASSIFIERS: X = iris.data y = iris.target elif name in FOREST_REGRESSORS: X = X_reg y = y_reg check_pickle(name, X[::2], y[::2]) def check_multioutput(name): # Check estimators on multi-output problems. X_train = [ [-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2], ] y_train = [ [-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3], ] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert len(proba) == 2 assert proba[0].shape == (4, 2) assert proba[1].shape == (4, 4) log_proba = est.predict_log_proba(X_test) assert len(log_proba) == 2 assert log_proba[0].shape == (4, 2) assert log_proba[1].shape == (4, 4) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) def test_multioutput(name): check_multioutput(name) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_multioutput_string(name): # Check estimators on multi-output problems with string outputs. X_train = [ [-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2], ] y_train = [ ["red", "blue"], ["red", "blue"], ["red", "blue"], ["green", "green"], ["green", "green"], ["green", "green"], ["red", "purple"], ["red", "purple"], ["red", "purple"], ["green", "yellow"], ["green", "yellow"], ["green", "yellow"], ] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [ ["red", "blue"], ["green", "green"], ["red", "purple"], ["green", "yellow"], ] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_equal(y_pred, y_test) with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert len(proba) == 2 assert proba[0].shape == (4, 2) assert proba[1].shape == (4, 4) log_proba = est.predict_log_proba(X_test) assert len(log_proba) == 2 assert log_proba[0].shape == (4, 2) assert log_proba[1].shape == (4, 4) def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert clf.n_classes_ == 2 assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_classes_shape(name): check_classes_shape(name) def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert type(X_transformed) == np.ndarray def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding( n_estimators=10, sparse_output=False, random_state=0 ) hasher_sparse = RandomTreesEmbedding( n_estimators=10, sparse_output=True, random_state=0 ) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert X_transformed.shape[0] == X.shape[0] assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert linear_clf.score(X_reduced, y) == 1.0 def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit( X_train, y_train ) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 reg = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in reg.estimators_: tree = "".join( ("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold) ) uniques[tree] += 1 uniques = sorted([(1.0 * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert len(uniques) == 5 assert 0.20 > uniques[0][0] # Rough approximation of 1/6. assert 0.20 > uniques[1][0] assert 0.20 > uniques[2][0] assert 0.20 > uniques[3][0] assert uniques[4][0] > 0.3 assert uniques[4][1] == "0,1/0,0/--0,2/--" # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) reg = ExtraTreesRegressor(max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in reg.estimators_: tree = "".join( ("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold) ) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert len(uniques) == 8 def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator( max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0 ).fit(X, y) assert est.estimators_[0].get_depth() == 1 est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert est.estimators_[0].get_depth() == 1 @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_max_leaf_nodes_max_depth(name): check_max_leaf_nodes_max_depth(name) def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value with pytest.raises(ValueError): ForestEstimator(min_samples_split=-1).fit(X, y) with pytest.raises(ValueError): ForestEstimator(min_samples_split=0).fit(X, y) with pytest.raises(ValueError): ForestEstimator(min_samples_split=1.1).fit(X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert np.min(node_samples) > len(X) * 0.5 - 1, "Failed with {0}".format(name) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert np.min(node_samples) > len(X) * 0.5 - 1, "Failed with {0}".format(name) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_min_samples_split(name): check_min_samples_split(name) def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value with pytest.raises(ValueError): ForestEstimator(min_samples_leaf=-1).fit(X, y) with pytest.raises(ValueError): ForestEstimator(min_samples_leaf=0).fit(X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert np.min(leaf_count) > 4, "Failed with {0}".format(name) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert np.min(leaf_count) > len(X) * 0.25 - 1, "Failed with {0}".format(name) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_min_samples_leaf(name): check_min_samples_leaf(name) def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator( min_weight_fraction_leaf=frac, n_estimators=1, random_state=0 ) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert ( np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf ), "Failed with {0} min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf ) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_min_weight_fraction_leaf(name): check_min_weight_fraction_leaf(name) def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal( sparse.feature_importances_, dense.feature_importances_ ) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal( sparse.predict_log_proba(X), dense.predict_log_proba(X) ) if name in FOREST_TRANSFORMERS: assert_array_almost_equal( sparse.transform(X).toarray(), dense.transform(X).toarray() ) assert_array_almost_equal( sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray() ) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) @pytest.mark.parametrize("sparse_matrix", (csr_matrix, csc_matrix, coo_matrix)) def test_sparse_input(name, sparse_matrix): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) check_sparse_input(name, X, sparse_matrix(X), y) def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_almost_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_almost_equal(est.fit(X, y).predict(X), y) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) @pytest.mark.parametrize("dtype", (np.float64, np.float32)) def test_memory_layout(name, dtype): check_memory_layout(name, dtype) @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] with pytest.raises(ValueError): ForestEstimator(n_estimators=1, random_state=0).fit(X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: with pytest.raises(ValueError): est.predict(X) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_1d_input(name): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target with ignore_warnings(): check_1d_input(name, X, X_2d, y) def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight="balanced", random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier( class_weight=[ {0: 2.0, 1: 2.0, 2: 1.0}, {0: 2.0, 1: 1.0, 2: 2.0}, {0: 1.0, 1: 2.0, 2: 2.0}, ], random_state=0, ) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight="balanced", random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1.0, 1: 100.0, 2: 1.0} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_class_weights(name): check_class_weights(name) def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight="balanced", random_state=0) clf.fit(X, _y) clf = ForestClassifier( class_weight=[{-1: 0.5, 1: 1.0}, {-2: 1.0, 2: 1.0}], random_state=0 ) clf.fit(X, _y) # smoke test for balanced subsample clf = ForestClassifier(class_weight="balanced_subsample", random_state=0) clf.fit(X, _y) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_class_weight_balanced_and_bootstrap_multi_output(name): check_class_weight_balanced_and_bootstrap_multi_output(name) def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight="the larch", random_state=0) with pytest.raises(ValueError): clf.fit(X, y) with pytest.raises(ValueError): clf.fit(X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight="balanced", warm_start=True, random_state=0) clf.fit(X, y) warn_msg = ( "Warm-start fitting without increasing n_estimators does not fit new trees." ) with pytest.warns(UserWarning, match=warn_msg): clf.fit(X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) with pytest.raises(ValueError): clf.fit(X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.0}], random_state=0) with pytest.raises(ValueError): clf.fit(X, _y) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_class_weight_errors(name): check_class_weight_errors(name) def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] est_ws = None for n_estimators in [5, 10]: if est_ws is None: est_ws = ForestEstimator( n_estimators=n_estimators, random_state=random_state, warm_start=True ) else: est_ws.set_params(n_estimators=n_estimators) est_ws.fit(X, y) assert len(est_ws) == n_estimators est_no_ws = ForestEstimator( n_estimators=10, random_state=random_state, warm_start=False ) est_no_ws.fit(X, y) assert set([tree.random_state for tree in est_ws]) == set( [tree.random_state for tree in est_no_ws] ) assert_array_equal( est_ws.apply(X), est_no_ws.apply(X), err_msg="Failed with {0}".format(name) ) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_warm_start(name): check_warm_start(name) def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) est_2 = ForestEstimator( n_estimators=5, max_depth=1, warm_start=True, random_state=2 ) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False, random_state=1) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.apply(X), est.apply(X)) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_warm_start_clear(name): check_warm_start_clear(name) def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=4) with pytest.raises(ValueError): est.fit(X, y) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_warm_start_smaller_n_estimators(name): check_warm_start_smaller_n_estimators(name) def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) est.fit(X, y) est_2 = ForestEstimator( n_estimators=5, max_depth=3, warm_start=True, random_state=1 ) est_2.fit(X, y) # Now est_2 equals est. est_2.set_params(random_state=2) warn_msg = ( "Warm-start fitting without increasing n_estimators does not fit new trees." ) with pytest.warns(UserWarning, match=warn_msg): est_2.fit(X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(est.apply(X), est_2.apply(X)) @pytest.mark.parametrize("name", FOREST_ESTIMATORS) def test_warm_start_equal_n_estimators(name): check_warm_start_equal_n_estimators(name) def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. est = ForestEstimator( n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True, ) est.fit(X, y) est_2 = ForestEstimator( n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False, ) est_2.fit(X, y) est_2.set_params(warm_start=True, oob_score=True, n_estimators=15) est_2.fit(X, y) assert hasattr(est_2, "oob_score_") assert est.oob_score_ == est_2.oob_score_ # Test that oob_score is computed even if we don't need to train # additional trees. est_3 = ForestEstimator( n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False, ) est_3.fit(X, y) assert not hasattr(est_3, "oob_score_") est_3.set_params(oob_score=True) ignore_warnings(est_3.fit)(X, y) assert est.oob_score_ == est_3.oob_score_ @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) def test_warm_start_oob(name): check_warm_start_oob(name) def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in "ABCDEFGHIJKLMNOPQRSTU"[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert indicator.shape[1] == n_nodes_ptr[-1] assert indicator.shape[0] == n_samples assert_array_equal( np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_] ) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [ indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id]) ] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) def test_decision_path(name): check_decision_path(name) def test_min_impurity_decrease(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [ RandomForestClassifier, RandomForestRegressor, ExtraTreesClassifier, ExtraTreesRegressor, ] for Estimator in all_estimators: est = Estimator(min_impurity_decrease=0.1) est.fit(X, y) for tree in est.estimators_: # Simply check if the parameter is passed on correctly. Tree tests # will suffice for the actual working of this param assert tree.min_impurity_decrease == 0.1 def test_poisson_y_positive_check(): est = RandomForestRegressor(criterion="poisson") X = np.zeros((3, 3)) y = [-1, 1, 3] err_msg = ( r"Some value\(s\) of y are negative which is " r"not allowed for Poisson regression." ) with pytest.raises(ValueError, match=err_msg): est.fit(X, y) y = [0, 0, 0] err_msg = ( r"Sum of y is not strictly positive which " r"is necessary for Poisson regression." ) with pytest.raises(ValueError, match=err_msg): est.fit(X, y) # mypy error: Variable "DEFAULT_JOBLIB_BACKEND" is not valid type class MyBackend(DEFAULT_JOBLIB_BACKEND): # type: ignore def __init__(self, *args, **kwargs): self.count = 0 super().__init__(*args, **kwargs) def start_call(self): self.count += 1 return super().start_call() joblib.register_parallel_backend("testing", MyBackend) @pytest.mark.skipif( parse_version(joblib.__version__) < parse_version("0.12"), reason="tests not yet supported in joblib <0.12", ) @skip_if_no_parallel def test_backend_respected(): clf = RandomForestClassifier(n_estimators=10, n_jobs=2) with joblib.parallel_backend("testing") as (ba, n_jobs): clf.fit(X, y) assert ba.count > 0 # predict_proba requires shared memory. Ensure that's honored. with joblib.parallel_backend("testing") as (ba, _): clf.predict_proba(X) assert ba.count == 0 def test_forest_feature_importances_sum(): X, y = make_classification( n_samples=15, n_informative=3, random_state=1, n_classes=3 ) clf = RandomForestClassifier( min_samples_leaf=5, random_state=42, n_estimators=200 ).fit(X, y) assert math.isclose(1, clf.feature_importances_.sum(), abs_tol=1e-7) def test_forest_degenerate_feature_importances(): # build a forest of single node trees. See #13636 X = np.zeros((10, 10)) y = np.ones((10,)) gbr = RandomForestRegressor(n_estimators=10).fit(X, y) assert_array_equal(gbr.feature_importances_, np.zeros(10, dtype=np.float64)) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) def test_max_samples_bootstrap(name): # Check invalid `max_samples` values est = FOREST_CLASSIFIERS_REGRESSORS[name](bootstrap=False, max_samples=0.5) err_msg = ( r"`max_sample` cannot be set if `bootstrap=False`. " r"Either switch to `bootstrap=True` or set " r"`max_sample=None`." ) with pytest.raises(ValueError, match=err_msg): est.fit(X, y) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS) @pytest.mark.parametrize( "max_samples, exc_type, exc_msg", [ ( int(1e9), ValueError, "`max_samples` must be in range 1 to 6 but got value 1000000000", ), ( 2.0, ValueError, r"`max_samples` must be in range \(0.0, 1.0\] but got value 2.0", ), ( 0.0, ValueError, r"`max_samples` must be in range \(0.0, 1.0\] but got value 0.0", ), ( np.nan, ValueError, r"`max_samples` must be in range \(0.0, 1.0\] but got value nan", ), ( np.inf, ValueError, r"`max_samples` must be in range \(0.0, 1.0\] but got value inf", ), ( "str max_samples?!", TypeError, r"`max_samples` should be int or float, but got " r"type '\'", ), ( np.ones(2), TypeError, r"`max_samples` should be int or float, but got type " r"'\'", ), ], # Avoid long error messages in test names: # https://github.com/scikit-learn/scikit-learn/issues/21362 ids=lambda x: x[:10].replace("]", "") if isinstance(x, str) else x, ) def test_max_samples_exceptions(name, max_samples, exc_type, exc_msg): # Check invalid `max_samples` values est = FOREST_CLASSIFIERS_REGRESSORS[name](bootstrap=True, max_samples=max_samples) with pytest.raises(exc_type, match=exc_msg): est.fit(X, y) @pytest.mark.parametrize("name", FOREST_REGRESSORS) def test_max_samples_boundary_regressors(name): X_train, X_test, y_train, y_test = train_test_split( X_reg, y_reg, train_size=0.7, test_size=0.3, random_state=0 ) ms_1_model = FOREST_REGRESSORS[name]( bootstrap=True, max_samples=1.0, random_state=0 ) ms_1_predict = ms_1_model.fit(X_train, y_train).predict(X_test) ms_None_model = FOREST_REGRESSORS[name]( bootstrap=True, max_samples=None, random_state=0 ) ms_None_predict = ms_None_model.fit(X_train, y_train).predict(X_test) ms_1_ms = mean_squared_error(ms_1_predict, y_test) ms_None_ms = mean_squared_error(ms_None_predict, y_test) assert ms_1_ms == pytest.approx(ms_None_ms) @pytest.mark.parametrize("name", FOREST_CLASSIFIERS) def test_max_samples_boundary_classifiers(name): X_train, X_test, y_train, _ = train_test_split( X_large, y_large, random_state=0, stratify=y_large ) ms_1_model = FOREST_CLASSIFIERS[name]( bootstrap=True, max_samples=1.0, random_state=0 ) ms_1_proba = ms_1_model.fit(X_train, y_train).predict_proba(X_test) ms_None_model = FOREST_CLASSIFIERS[name]( bootstrap=True, max_samples=None, random_state=0 ) ms_None_proba = ms_None_model.fit(X_train, y_train).predict_proba(X_test) np.testing.assert_allclose(ms_1_proba, ms_None_proba) def test_forest_y_sparse(): X = [[1, 2, 3]] y = csr_matrix([4, 5, 6]) est = RandomForestClassifier() msg = "sparse multilabel-indicator for y is not supported." with pytest.raises(ValueError, match=msg): est.fit(X, y) @pytest.mark.parametrize("ForestClass", [RandomForestClassifier, RandomForestRegressor]) def test_little_tree_with_small_max_samples(ForestClass): rng = np.random.RandomState(1) X = rng.randn(10000, 2) y = rng.randn(10000) > 0 # First fit with no restriction on max samples est1 = ForestClass( n_estimators=1, random_state=rng, max_samples=None, ) # Second fit with max samples restricted to just 2 est2 = ForestClass( n_estimators=1, random_state=rng, max_samples=2, ) est1.fit(X, y) est2.fit(X, y) tree1 = est1.estimators_[0].tree_ tree2 = est2.estimators_[0].tree_ msg = "Tree without `max_samples` restriction should have more nodes" assert tree1.node_count > tree2.node_count, msg # FIXME: remove in 1.2 @pytest.mark.parametrize( "Estimator", [ ExtraTreesClassifier, ExtraTreesRegressor, RandomForestClassifier, RandomForestRegressor, RandomTreesEmbedding, ], ) def test_n_features_deprecation(Estimator): # Check that we raise the proper deprecation warning if accessing # `n_features_`. X = np.array([[1, 2], [3, 4]]) y = np.array([1, 0]) est = Estimator().fit(X, y) with pytest.warns(FutureWarning, match="`n_features_` was deprecated"): est.n_features_ # TODO: Remove in v1.2 @pytest.mark.parametrize( "old_criterion, new_criterion", [ ("mse", "squared_error"), ("mae", "absolute_error"), ], ) def test_criterion_deprecated(old_criterion, new_criterion): est1 = RandomForestRegressor(criterion=old_criterion, random_state=0) with pytest.warns( FutureWarning, match=f"Criterion '{old_criterion}' was deprecated" ): est1.fit(X, y) est2 = RandomForestRegressor(criterion=new_criterion, random_state=0) est2.fit(X, y) assert_allclose(est1.predict(X), est2.predict(X)) @pytest.mark.parametrize("Forest", FOREST_REGRESSORS) def test_mse_criterion_object_segfault_smoke_test(Forest): # This is a smoke test to ensure that passing a mutable criterion # does not cause a segfault when fitting with concurrent threads. # Non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/12623 from sklearn.tree._criterion import MSE y = y_reg.reshape(-1, 1) n_samples, n_outputs = y.shape mse_criterion = MSE(n_outputs, n_samples) est = FOREST_REGRESSORS[Forest](n_estimators=2, n_jobs=2, criterion=mse_criterion) est.fit(X_reg, y)