# Authors: Lars Buitinck # Dan Blanchard # License: BSD 3 clause from array import array from collections.abc import Mapping, Iterable from operator import itemgetter from numbers import Number import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils import check_array, tosequence from ..utils.deprecation import deprecated def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(TransformerMixin, BaseEstimator): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". If a feature value is a sequence or set of strings, this transformer will iterate over the values and will count the occurrences of each string value. However, note that this transformer will only do a binary one-hot encoding when feature values are of type string. If categorical features are represented as numeric values such as int or iterables of strings, the DictVectorizer can be followed by :class:`~sklearn.preprocessing.OneHotEncoder` to complete binary one-hot encoding. Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide `. Parameters ---------- dtype : dtype, default=np.float64 The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator : str, default="=" Separator string used when constructing new features for one-hot coding. sparse : bool, default=True Whether transform should produce scipy.sparse matrices. sort : bool, default=True Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). See Also -------- FeatureHasher : Performs vectorization using only a hash function. sklearn.preprocessing.OrdinalEncoder : Handles nominal/categorical features encoded as columns of arbitrary data types. Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[2., 0., 1.], [0., 1., 3.]]) >>> v.inverse_transform(X) == [{'bar': 2.0, 'foo': 1.0}, ... {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[0., 0., 4.]]) """ def __init__(self, *, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def _add_iterable_element( self, f, v, feature_names, vocab, *, fitting=True, transforming=False, indices=None, values=None, ): """Add feature names for iterable of strings""" for vv in v: if isinstance(vv, str): feature_name = "%s%s%s" % (f, self.separator, vv) vv = 1 else: raise TypeError( f"Unsupported type {type(vv)} in iterable " "value. Only iterables of string are " "supported." ) if fitting and feature_name not in vocab: vocab[feature_name] = len(feature_names) feature_names.append(feature_name) if transforming and feature_name in vocab: indices.append(vocab[feature_name]) values.append(self.dtype(vv)) def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). .. versionchanged:: 0.24 Accepts multiple string values for one categorical feature. y : (ignored) Ignored parameter. Returns ------- self : object DictVectorizer class instance. """ feature_names = [] vocab = {} for x in X: for f, v in x.items(): if isinstance(v, str): feature_name = "%s%s%s" % (f, self.separator, v) v = 1 elif isinstance(v, Number) or (v is None): feature_name = f elif isinstance(v, Mapping): raise TypeError( f"Unsupported value type {type(v)} " f"for {f}: {v}.\n" "Mapping objects are not supported." ) elif isinstance(v, Iterable): feature_name = None self._add_iterable_element(f, v, feature_names, vocab) if feature_name is not None: if feature_name not in vocab: vocab[feature_name] = len(feature_names) feature_names.append(feature_name) if self.sort: feature_names.sort() vocab = {f: i for i, f in enumerate(feature_names)} self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report" ) dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ transforming = True # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = [0] # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in x.items(): if isinstance(v, str): feature_name = "%s%s%s" % (f, self.separator, v) v = 1 elif isinstance(v, Number) or (v is None): feature_name = f elif not isinstance(v, Mapping) and isinstance(v, Iterable): feature_name = None self._add_iterable_element( f, v, feature_names, vocab, fitting=fitting, transforming=transforming, indices=indices, values=values, ) else: raise TypeError( f"Unsupported value Type {type(v)} " f"for {f}: {v}.\n" f"{type(v)} objects are not supported." ) if feature_name is not None: if fitting and feature_name not in vocab: vocab[feature_name] = len(feature_names) feature_names.append(feature_name) if feature_name in vocab: indices.append(vocab[feature_name]) values.append(self.dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = np.frombuffer(indices, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix( (values, indices, indptr), shape=shape, dtype=dtype ) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). .. versionchanged:: 0.24 Accepts multiple string values for one categorical feature. y : (ignored) Ignored parameter. Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Sample matrix. dict_type : type, default=dict Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects of shape (n_samples,) Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=["csr", "csc"]) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in range(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings of shape (n_samples,) Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=False) @deprecated( "get_feature_names is deprecated in 1.0 and will be removed " "in 1.2. Please use get_feature_names_out instead." ) def get_feature_names(self): """Return a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. Returns ------- feature_names_ : list of length (n_features,) List containing the feature names (e.g., "f=ham" and "f=spam"). """ return self.feature_names_ def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ if any(not isinstance(name, str) for name in self.feature_names_): feature_names = [str(name) for name in self.feature_names_] else: feature_names = self.feature_names_ return np.asarray(feature_names, dtype=object) def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : bool, default=False Whether support is a list of indices. Returns ------- self : object DictVectorizer class instance. Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names_out() array(['bar', 'baz', 'foo'], ...) >>> v.restrict(support.get_support()) DictVectorizer() >>> v.get_feature_names_out() array(['bar', 'foo'], ...) """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [ f for f, i in sorted(new_vocab.items(), key=itemgetter(1)) ] return self def _more_tags(self): return {"X_types": ["dict"]}