import numpy as np import pytest from sklearn.utils._testing import assert_array_equal from scipy.sparse import bsr_matrix, csc_matrix, csr_matrix from sklearn.feature_selection import VarianceThreshold data = [[0, 1, 2, 3, 4], [0, 2, 2, 3, 5], [1, 1, 2, 4, 0]] data2 = [[-0.13725701]] * 10 def test_zero_variance(): # Test VarianceThreshold with default setting, zero variance. for X in [data, csr_matrix(data), csc_matrix(data), bsr_matrix(data)]: sel = VarianceThreshold().fit(X) assert_array_equal([0, 1, 3, 4], sel.get_support(indices=True)) with pytest.raises(ValueError): VarianceThreshold().fit([[0, 1, 2, 3]]) with pytest.raises(ValueError): VarianceThreshold().fit([[0, 1], [0, 1]]) def test_variance_threshold(): # Test VarianceThreshold with custom variance. for X in [data, csr_matrix(data)]: X = VarianceThreshold(threshold=0.4).fit_transform(X) assert (len(data), 1) == X.shape @pytest.mark.parametrize("X", [data, csr_matrix(data)]) def test_variance_negative(X): """Test VarianceThreshold with negative variance.""" var_threshold = VarianceThreshold(threshold=-1.0) msg = r"^Threshold must be non-negative. Got: -1.0$" with pytest.raises(ValueError, match=msg): var_threshold.fit(X) @pytest.mark.skipif( np.var(data2) == 0, reason=( "This test is not valid for this platform, " "as it relies on numerical instabilities." ), ) def test_zero_variance_floating_point_error(): # Test that VarianceThreshold(0.0).fit eliminates features that have # the same value in every sample, even when floating point errors # cause np.var not to be 0 for the feature. # See #13691 for X in [data2, csr_matrix(data2), csc_matrix(data2), bsr_matrix(data2)]: msg = "No feature in X meets the variance threshold 0.00000" with pytest.raises(ValueError, match=msg): VarianceThreshold().fit(X) def test_variance_nan(): arr = np.array(data, dtype=np.float64) # add single NaN and feature should still be included arr[0, 0] = np.NaN # make all values in feature NaN and feature should be rejected arr[:, 1] = np.NaN for X in [arr, csr_matrix(arr), csc_matrix(arr), bsr_matrix(arr)]: sel = VarianceThreshold().fit(X) assert_array_equal([0, 3, 4], sel.get_support(indices=True))