# Authors: Manoj Kumar mks542@nyu.edu # License: BSD 3 clause import numpy as np from scipy import optimize from ..base import BaseEstimator, RegressorMixin from ._base import LinearModel from ..utils import axis0_safe_slice from ..utils.validation import _check_sample_weight from ..utils.extmath import safe_sparse_dot from ..utils.optimize import _check_optimize_result def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None): """Returns the Huber loss and the gradient. Parameters ---------- w : ndarray, shape (n_features + 1,) or (n_features + 2,) Feature vector. w[:n_features] gives the coefficients w[-1] gives the scale factor and if the intercept is fit w[-2] gives the intercept factor. X : ndarray of shape (n_samples, n_features) Input data. y : ndarray of shape (n_samples,) Target vector. epsilon : float Robustness of the Huber estimator. alpha : float Regularization parameter. sample_weight : ndarray of shape (n_samples,), default=None Weight assigned to each sample. Returns ------- loss : float Huber loss. gradient : ndarray, shape (len(w)) Returns the derivative of the Huber loss with respect to each coefficient, intercept and the scale as a vector. """ _, n_features = X.shape fit_intercept = n_features + 2 == w.shape[0] if fit_intercept: intercept = w[-2] sigma = w[-1] w = w[:n_features] n_samples = np.sum(sample_weight) # Calculate the values where |y - X'w -c / sigma| > epsilon # The values above this threshold are outliers. linear_loss = y - safe_sparse_dot(X, w) if fit_intercept: linear_loss -= intercept abs_linear_loss = np.abs(linear_loss) outliers_mask = abs_linear_loss > epsilon * sigma # Calculate the linear loss due to the outliers. # This is equal to (2 * M * |y - X'w -c / sigma| - M**2) * sigma outliers = abs_linear_loss[outliers_mask] num_outliers = np.count_nonzero(outliers_mask) n_non_outliers = X.shape[0] - num_outliers # n_sq_outliers includes the weight give to the outliers while # num_outliers is just the number of outliers. outliers_sw = sample_weight[outliers_mask] n_sw_outliers = np.sum(outliers_sw) outlier_loss = ( 2.0 * epsilon * np.sum(outliers_sw * outliers) - sigma * n_sw_outliers * epsilon ** 2 ) # Calculate the quadratic loss due to the non-outliers.- # This is equal to |(y - X'w - c)**2 / sigma**2| * sigma non_outliers = linear_loss[~outliers_mask] weighted_non_outliers = sample_weight[~outliers_mask] * non_outliers weighted_loss = np.dot(weighted_non_outliers.T, non_outliers) squared_loss = weighted_loss / sigma if fit_intercept: grad = np.zeros(n_features + 2) else: grad = np.zeros(n_features + 1) # Gradient due to the squared loss. X_non_outliers = -axis0_safe_slice(X, ~outliers_mask, n_non_outliers) grad[:n_features] = ( 2.0 / sigma * safe_sparse_dot(weighted_non_outliers, X_non_outliers) ) # Gradient due to the linear loss. signed_outliers = np.ones_like(outliers) signed_outliers_mask = linear_loss[outliers_mask] < 0 signed_outliers[signed_outliers_mask] = -1.0 X_outliers = axis0_safe_slice(X, outliers_mask, num_outliers) sw_outliers = sample_weight[outliers_mask] * signed_outliers grad[:n_features] -= 2.0 * epsilon * (safe_sparse_dot(sw_outliers, X_outliers)) # Gradient due to the penalty. grad[:n_features] += alpha * 2.0 * w # Gradient due to sigma. grad[-1] = n_samples grad[-1] -= n_sw_outliers * epsilon ** 2 grad[-1] -= squared_loss / sigma # Gradient due to the intercept. if fit_intercept: grad[-2] = -2.0 * np.sum(weighted_non_outliers) / sigma grad[-2] -= 2.0 * epsilon * np.sum(sw_outliers) loss = n_samples * sigma + squared_loss + outlier_loss loss += alpha * np.dot(w, w) return loss, grad class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator): """Linear regression model that is robust to outliers. The Huber Regressor optimizes the squared loss for the samples where ``|(y - X'w) / sigma| < epsilon`` and the absolute loss for the samples where ``|(y - X'w) / sigma| > epsilon``, where w and sigma are parameters to be optimized. The parameter sigma makes sure that if y is scaled up or down by a certain factor, one does not need to rescale epsilon to achieve the same robustness. Note that this does not take into account the fact that the different features of X may be of different scales. This makes sure that the loss function is not heavily influenced by the outliers while not completely ignoring their effect. Read more in the :ref:`User Guide ` .. versionadded:: 0.18 Parameters ---------- epsilon : float, greater than 1.0, default=1.35 The parameter epsilon controls the number of samples that should be classified as outliers. The smaller the epsilon, the more robust it is to outliers. max_iter : int, default=100 Maximum number of iterations that ``scipy.optimize.minimize(method="L-BFGS-B")`` should run for. alpha : float, default=0.0001 Regularization parameter. warm_start : bool, default=False This is useful if the stored attributes of a previously used model has to be reused. If set to False, then the coefficients will be rewritten for every call to fit. See :term:`the Glossary `. fit_intercept : bool, default=True Whether or not to fit the intercept. This can be set to False if the data is already centered around the origin. tol : float, default=1e-05 The iteration will stop when ``max{|proj g_i | i = 1, ..., n}`` <= ``tol`` where pg_i is the i-th component of the projected gradient. Attributes ---------- coef_ : array, shape (n_features,) Features got by optimizing the Huber loss. intercept_ : float Bias. scale_ : float The value by which ``|y - X'w - c|`` is scaled down. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int Number of iterations that ``scipy.optimize.minimize(method="L-BFGS-B")`` has run for. .. versionchanged:: 0.20 In SciPy <= 1.0.0 the number of lbfgs iterations may exceed ``max_iter``. ``n_iter_`` will now report at most ``max_iter``. outliers_ : array, shape (n_samples,) A boolean mask which is set to True where the samples are identified as outliers. See Also -------- RANSACRegressor : RANSAC (RANdom SAmple Consensus) algorithm. TheilSenRegressor : Theil-Sen Estimator robust multivariate regression model. SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD. References ---------- .. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics Concomitant scale estimates, pg 172 .. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression. https://statweb.stanford.edu/~owen/reports/hhu.pdf Examples -------- >>> import numpy as np >>> from sklearn.linear_model import HuberRegressor, LinearRegression >>> from sklearn.datasets import make_regression >>> rng = np.random.RandomState(0) >>> X, y, coef = make_regression( ... n_samples=200, n_features=2, noise=4.0, coef=True, random_state=0) >>> X[:4] = rng.uniform(10, 20, (4, 2)) >>> y[:4] = rng.uniform(10, 20, 4) >>> huber = HuberRegressor().fit(X, y) >>> huber.score(X, y) -7.284... >>> huber.predict(X[:1,]) array([806.7200...]) >>> linear = LinearRegression().fit(X, y) >>> print("True coefficients:", coef) True coefficients: [20.4923... 34.1698...] >>> print("Huber coefficients:", huber.coef_) Huber coefficients: [17.7906... 31.0106...] >>> print("Linear Regression coefficients:", linear.coef_) Linear Regression coefficients: [-1.9221... 7.0226...] """ def __init__( self, *, epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05, ): self.epsilon = epsilon self.max_iter = max_iter self.alpha = alpha self.warm_start = warm_start self.fit_intercept = fit_intercept self.tol = tol def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) Weight given to each sample. Returns ------- self : object Fitted `HuberRegressor` estimator. """ X, y = self._validate_data( X, y, copy=False, accept_sparse=["csr"], y_numeric=True, dtype=[np.float64, np.float32], ) sample_weight = _check_sample_weight(sample_weight, X) if self.epsilon < 1.0: raise ValueError( "epsilon should be greater than or equal to 1.0, got %f" % self.epsilon ) if self.warm_start and hasattr(self, "coef_"): parameters = np.concatenate((self.coef_, [self.intercept_, self.scale_])) else: if self.fit_intercept: parameters = np.zeros(X.shape[1] + 2) else: parameters = np.zeros(X.shape[1] + 1) # Make sure to initialize the scale parameter to a strictly # positive value: parameters[-1] = 1 # Sigma or the scale factor should be non-negative. # Setting it to be zero might cause undefined bounds hence we set it # to a value close to zero. bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1)) bounds[-1][0] = np.finfo(np.float64).eps * 10 opt_res = optimize.minimize( _huber_loss_and_gradient, parameters, method="L-BFGS-B", jac=True, args=(X, y, self.epsilon, self.alpha, sample_weight), options={"maxiter": self.max_iter, "gtol": self.tol, "iprint": -1}, bounds=bounds, ) parameters = opt_res.x if opt_res.status == 2: raise ValueError( "HuberRegressor convergence failed: l-BFGS-b solver terminated with %s" % opt_res.message ) self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) self.scale_ = parameters[-1] if self.fit_intercept: self.intercept_ = parameters[-2] else: self.intercept_ = 0.0 self.coef_ = parameters[: X.shape[1]] residual = np.abs(y - safe_sparse_dot(X, self.coef_) - self.intercept_) self.outliers_ = residual > self.scale_ * self.epsilon return self