# Author: Vlad Niculae # License: BSD 3 clause import numpy as np import pytest from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import ignore_warnings from sklearn.linear_model import ( orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression, ) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 25, 35, 5, 3 y, X, gamma = make_sparse_coded_signal( n_samples=n_targets, n_components=n_features, n_features=n_samples, n_nonzero_coefs=n_nonzero_coefs, random_state=0, ) # Make X not of norm 1 for testing X *= 10 y *= 10 G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) # FIXME: 'normalize' to set to False in 1.2 and removed in 1.4 @pytest.mark.parametrize( "OmpModel", [OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV] ) @pytest.mark.parametrize( "normalize, n_warnings", [(True, 0), (False, 0), ("deprecated", 1)] ) def test_assure_warning_when_normalize(OmpModel, normalize, n_warnings): # check that we issue a FutureWarning when normalize was set rng = check_random_state(0) n_samples = 200 n_features = 2 X = rng.randn(n_samples, n_features) X[X < 0.1] = 0.0 y = rng.rand(n_samples) model = OmpModel(normalize=normalize) with pytest.warns(None) as record: model.fit(X, y) record = [r for r in record if r.category == FutureWarning] assert len(record) == n_warnings def test_correct_shapes(): assert orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape == (n_features,) assert orthogonal_mp(X, y, n_nonzero_coefs=5).shape == (n_features, 3) def test_correct_shapes_gram(): assert orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape == (n_features,) assert orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape == (n_features, 3) def test_n_nonzero_coefs(): assert np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5 assert ( np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5 ) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol assert np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True), ) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.0), orthogonal_mp(X, y, tol=1.0, precompute=True) ) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features) ) warning_message = ( "Orthogonal matching pursuit ended prematurely " "due to linear dependence in the dictionary. " "The requested precision might not have been met." ) with pytest.warns(RuntimeWarning, match=warning_message): assert_array_almost_equal( orthogonal_mp(X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features), ) @pytest.mark.parametrize("positional_params", [(X, y), (G, Xy)]) @pytest.mark.parametrize( "keyword_params", [{"tol": -1}, {"n_nonzero_coefs": -1}, {"n_nonzero_coefs": n_features + 1}], ) def test_bad_input(positional_params, keyword_params): with pytest.raises(ValueError): orthogonal_mp(*positional_params, **keyword_params) def test_perfect_signal_recovery(): (idx,) = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_orthogonal_mp_gram_readonly(): # Non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/5956 (idx,) = gamma[:, 0].nonzero() G_readonly = G.copy() G_readonly.setflags(write=False) Xy_readonly = Xy.copy() Xy_readonly.setflags(write=False) gamma_gram = orthogonal_mp_gram( G_readonly, Xy_readonly[:, 0], n_nonzero_coefs=5, copy_Gram=False, copy_Xy=False ) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) # FIXME: 'normalize' to be removed in 1.4 @pytest.mark.filterwarnings("ignore:The default of 'normalize'") def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert omp.coef_.shape == (n_features,) assert omp.intercept_.shape == () assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs omp.fit(X, y) assert omp.coef_.shape == (n_targets, n_features) assert omp.intercept_.shape == (n_targets,) assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs coef_normalized = omp.coef_[0].copy() omp.set_params(fit_intercept=True, normalize=False) omp.fit(X, y[:, 0]) assert_array_almost_equal(coef_normalized, omp.coef_) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs assert omp.coef_.shape == (n_features,) assert omp.intercept_ == 0 omp.fit(X, y) assert omp.coef_.shape == (n_targets, n_features) assert omp.intercept_ == 0 assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1.0 newy = np.dot(newX, gamma) warning_message = ( "Orthogonal matching pursuit ended prematurely " "due to linear dependence in the dictionary. " "The requested precision might not have been met." ) with pytest.warns(RuntimeWarning, match=warning_message): orthogonal_mp(newX, newy, n_nonzero_coefs=2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, n_nonzero_coefs=2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, n_nonzero_coefs=2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, n_nonzero_coefs=1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, n_nonzero_coefs=1) assert np.all(gamma_empty == 0) assert np.all(gamma_empty_gram == 0) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert path.shape == (n_features, n_targets, 5) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert path.shape == (n_features, n_targets, 5) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert path.shape == (n_features, n_targets, 5) assert_array_almost_equal(path[:, :, -1], last) # FIXME: 'normalize' to be removed in 1.4 @pytest.mark.filterwarnings("ignore:The default of 'normalize'") def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV( normalize=True, fit_intercept=False, max_iter=10 ) ompcv.fit(X, y_) assert ompcv.n_nonzero_coefs_ == n_nonzero_coefs assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit( normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_ ) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) # FIXME: 'normalize' to be removed in 1.4 @pytest.mark.filterwarnings("ignore:The default of 'normalize'") def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)