# Authors: Nicolas Goix # Alexandre Gramfort # License: BSD 3 clause from math import sqrt import numpy as np from sklearn import neighbors import re import pytest from numpy.testing import assert_array_equal from sklearn import metrics from sklearn.metrics import roc_auc_score from sklearn.utils import check_random_state from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils.estimator_checks import check_outlier_corruption from sklearn.utils.estimator_checks import parametrize_with_checks from sklearn.datasets import load_iris # load the iris dataset # and randomly permute it rng = check_random_state(0) iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_lof(): # Toy sample (the last two samples are outliers): X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [5, 3], [-4, 2]] # Test LocalOutlierFactor: clf = neighbors.LocalOutlierFactor(n_neighbors=5) score = clf.fit(X).negative_outlier_factor_ assert_array_equal(clf._fit_X, X) # Assert largest outlier score is smaller than smallest inlier score: assert np.min(score[:-2]) > np.max(score[-2:]) # Assert predict() works: clf = neighbors.LocalOutlierFactor(contamination=0.25, n_neighbors=5).fit(X) assert_array_equal(clf._predict(), 6 * [1] + 2 * [-1]) assert_array_equal(clf.fit_predict(X), 6 * [1] + 2 * [-1]) def test_lof_performance(): # Generate train/test data rng = check_random_state(2) X = 0.3 * rng.randn(120, 2) X_train = X[:100] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) X_test = np.r_[X[100:], X_outliers] y_test = np.array([0] * 20 + [1] * 20) # fit the model for novelty detection clf = neighbors.LocalOutlierFactor(novelty=True).fit(X_train) # predict scores (the lower, the more normal) y_pred = -clf.decision_function(X_test) # check that roc_auc is good assert roc_auc_score(y_test, y_pred) > 0.99 def test_lof_values(): # toy samples: X_train = [[1, 1], [1, 2], [2, 1]] clf1 = neighbors.LocalOutlierFactor( n_neighbors=2, contamination=0.1, novelty=True ).fit(X_train) clf2 = neighbors.LocalOutlierFactor(n_neighbors=2, novelty=True).fit(X_train) s_0 = 2.0 * sqrt(2.0) / (1.0 + sqrt(2.0)) s_1 = (1.0 + sqrt(2)) * (1.0 / (4.0 * sqrt(2.0)) + 1.0 / (2.0 + 2.0 * sqrt(2))) # check predict() assert_array_almost_equal(-clf1.negative_outlier_factor_, [s_0, s_1, s_1]) assert_array_almost_equal(-clf2.negative_outlier_factor_, [s_0, s_1, s_1]) # check predict(one sample not in train) assert_array_almost_equal(-clf1.score_samples([[2.0, 2.0]]), [s_0]) assert_array_almost_equal(-clf2.score_samples([[2.0, 2.0]]), [s_0]) # check predict(one sample already in train) assert_array_almost_equal(-clf1.score_samples([[1.0, 1.0]]), [s_1]) assert_array_almost_equal(-clf2.score_samples([[1.0, 1.0]]), [s_1]) def test_lof_precomputed(random_state=42): """Tests LOF with a distance matrix.""" # Note: smaller samples may result in spurious test success rng = np.random.RandomState(random_state) X = rng.random_sample((10, 4)) Y = rng.random_sample((3, 4)) DXX = metrics.pairwise_distances(X, metric="euclidean") DYX = metrics.pairwise_distances(Y, X, metric="euclidean") # As a feature matrix (n_samples by n_features) lof_X = neighbors.LocalOutlierFactor(n_neighbors=3, novelty=True) lof_X.fit(X) pred_X_X = lof_X._predict() pred_X_Y = lof_X.predict(Y) # As a dense distance matrix (n_samples by n_samples) lof_D = neighbors.LocalOutlierFactor( n_neighbors=3, algorithm="brute", metric="precomputed", novelty=True ) lof_D.fit(DXX) pred_D_X = lof_D._predict() pred_D_Y = lof_D.predict(DYX) assert_array_almost_equal(pred_X_X, pred_D_X) assert_array_almost_equal(pred_X_Y, pred_D_Y) def test_n_neighbors_attribute(): X = iris.data clf = neighbors.LocalOutlierFactor(n_neighbors=500).fit(X) assert clf.n_neighbors_ == X.shape[0] - 1 clf = neighbors.LocalOutlierFactor(n_neighbors=500) msg = "n_neighbors will be set to (n_samples - 1)" with pytest.warns(UserWarning, match=re.escape(msg)): clf.fit(X) assert clf.n_neighbors_ == X.shape[0] - 1 def test_score_samples(): X_train = [[1, 1], [1, 2], [2, 1]] clf1 = neighbors.LocalOutlierFactor( n_neighbors=2, contamination=0.1, novelty=True ).fit(X_train) clf2 = neighbors.LocalOutlierFactor(n_neighbors=2, novelty=True).fit(X_train) assert_array_equal( clf1.score_samples([[2.0, 2.0]]), clf1.decision_function([[2.0, 2.0]]) + clf1.offset_, ) assert_array_equal( clf2.score_samples([[2.0, 2.0]]), clf2.decision_function([[2.0, 2.0]]) + clf2.offset_, ) assert_array_equal( clf1.score_samples([[2.0, 2.0]]), clf2.score_samples([[2.0, 2.0]]) ) def test_contamination(): X = [[1, 1], [1, 0]] clf = neighbors.LocalOutlierFactor(contamination=0.6) with pytest.raises(ValueError): clf.fit(X) def test_novelty_errors(): X = iris.data # check errors for novelty=False clf = neighbors.LocalOutlierFactor() clf.fit(X) # predict, decision_function and score_samples raise ValueError for method in ["predict", "decision_function", "score_samples"]: msg = "{} is not available when novelty=False".format(method) with pytest.raises(AttributeError, match=msg): getattr(clf, method) # check errors for novelty=True clf = neighbors.LocalOutlierFactor(novelty=True) msg = "fit_predict is not available when novelty=True" with pytest.raises(AttributeError, match=msg): getattr(clf, "fit_predict") def test_novelty_training_scores(): # check that the scores of the training samples are still accessible # when novelty=True through the negative_outlier_factor_ attribute X = iris.data # fit with novelty=False clf_1 = neighbors.LocalOutlierFactor() clf_1.fit(X) scores_1 = clf_1.negative_outlier_factor_ # fit with novelty=True clf_2 = neighbors.LocalOutlierFactor(novelty=True) clf_2.fit(X) scores_2 = clf_2.negative_outlier_factor_ assert_array_almost_equal(scores_1, scores_2) def test_hasattr_prediction(): # check availability of prediction methods depending on novelty value. X = [[1, 1], [1, 2], [2, 1]] # when novelty=True clf = neighbors.LocalOutlierFactor(novelty=True) clf.fit(X) assert hasattr(clf, "predict") assert hasattr(clf, "decision_function") assert hasattr(clf, "score_samples") assert not hasattr(clf, "fit_predict") # when novelty=False clf = neighbors.LocalOutlierFactor(novelty=False) clf.fit(X) assert hasattr(clf, "fit_predict") assert not hasattr(clf, "predict") assert not hasattr(clf, "decision_function") assert not hasattr(clf, "score_samples") @parametrize_with_checks([neighbors.LocalOutlierFactor(novelty=True)]) def test_novelty_true_common_tests(estimator, check): # the common tests are run for the default LOF (novelty=False). # here we run these common tests for LOF when novelty=True check(estimator) @pytest.mark.parametrize("expected_outliers", [30, 53]) def test_predicted_outlier_number(expected_outliers): # the number of predicted outliers should be equal to the number of # expected outliers unless there are ties in the abnormality scores. X = iris.data n_samples = X.shape[0] contamination = float(expected_outliers) / n_samples clf = neighbors.LocalOutlierFactor(contamination=contamination) y_pred = clf.fit_predict(X) num_outliers = np.sum(y_pred != 1) if num_outliers != expected_outliers: y_dec = clf.negative_outlier_factor_ check_outlier_corruption(num_outliers, expected_outliers, y_dec)