"""Common tests for metaestimators""" import functools from inspect import signature import numpy as np import pytest from sklearn.base import BaseEstimator from sklearn.base import is_regressor from sklearn.datasets import make_classification from sklearn.utils import all_estimators from sklearn.utils.estimator_checks import _enforce_estimator_tags_x from sklearn.utils.estimator_checks import _enforce_estimator_tags_y from sklearn.utils.validation import check_is_fitted from sklearn.utils._testing import set_random_state from sklearn.pipeline import Pipeline, make_pipeline from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier from sklearn.exceptions import NotFittedError from sklearn.semi_supervised import SelfTrainingClassifier from sklearn.linear_model import Ridge, LogisticRegression from sklearn.preprocessing import StandardScaler, MaxAbsScaler class DelegatorData: def __init__( self, name, construct, skip_methods=(), fit_args=make_classification() ): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData("Pipeline", lambda est: Pipeline([("est", est)])), DelegatorData( "GridSearchCV", lambda est: GridSearchCV(est, param_grid={"param": [5]}, cv=2), skip_methods=["score"], ), DelegatorData( "RandomizedSearchCV", lambda est: RandomizedSearchCV( est, param_distributions={"param": [5]}, cv=2, n_iter=1 ), skip_methods=["score"], ), DelegatorData("RFE", RFE, skip_methods=["transform", "inverse_transform"]), DelegatorData("RFECV", RFECV, skip_methods=["transform", "inverse_transform"]), DelegatorData( "BaggingClassifier", BaggingClassifier, skip_methods=[ "transform", "inverse_transform", "score", "predict_proba", "predict_log_proba", "predict", ], ), DelegatorData( "SelfTrainingClassifier", lambda est: SelfTrainingClassifier(est), skip_methods=["transform", "inverse_transform", "predict_proba"], ), ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError("%r is hidden" % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) self.classes_ = [] return True def _check_fit(self): check_is_fitted(self) @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, y, *args, **kwargs): self._check_fit() return 1.0 methods = [ k for k in SubEstimator.__dict__.keys() if not k.startswith("_") and not k.startswith("fit") ] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert hasattr(delegate, method) assert hasattr( delegator, method ), "%s does not have method %r when its delegate does" % ( delegator_data.name, method, ) # delegation before fit raises a NotFittedError if method == "score": with pytest.raises(NotFittedError): getattr(delegator, method)( delegator_data.fit_args[0], delegator_data.fit_args[1] ) else: with pytest.raises(NotFittedError): getattr(delegator, method)(delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation if method == "score": getattr(delegator, method)( delegator_data.fit_args[0], delegator_data.fit_args[1] ) else: getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert not hasattr(delegate, method) assert not hasattr( delegator, method ), "%s has method %r when its delegate does not" % ( delegator_data.name, method, ) def _generate_meta_estimator_instances_with_pipeline(): """Generate instances of meta-estimators fed with a pipeline Are considered meta-estimators all estimators accepting one of "estimator", "base_estimator" or "estimators". """ for _, Estimator in sorted(all_estimators()): sig = set(signature(Estimator).parameters) if "estimator" in sig or "base_estimator" in sig or "regressor" in sig: if is_regressor(Estimator): estimator = make_pipeline(TfidfVectorizer(), Ridge()) param_grid = {"ridge__alpha": [0.1, 1.0]} else: estimator = make_pipeline(TfidfVectorizer(), LogisticRegression()) param_grid = {"logisticregression__C": [0.1, 1.0]} if "param_grid" in sig or "param_distributions" in sig: # SearchCV estimators extra_params = {"n_iter": 2} if "n_iter" in sig else {} yield Estimator(estimator, param_grid, **extra_params) else: yield Estimator(estimator) elif "transformer_list" in sig: # FeatureUnion transformer_list = [ ("trans1", make_pipeline(TfidfVectorizer(), MaxAbsScaler())), ( "trans2", make_pipeline(TfidfVectorizer(), StandardScaler(with_mean=False)), ), ] yield Estimator(transformer_list) elif "estimators" in sig: # stacking, voting if is_regressor(Estimator): estimator = [ ("est1", make_pipeline(TfidfVectorizer(), Ridge(alpha=0.1))), ("est2", make_pipeline(TfidfVectorizer(), Ridge(alpha=1))), ] else: estimator = [ ( "est1", make_pipeline(TfidfVectorizer(), LogisticRegression(C=0.1)), ), ("est2", make_pipeline(TfidfVectorizer(), LogisticRegression(C=1))), ] yield Estimator(estimator) else: continue # TODO: remove data validation for the following estimators # They should be able to work on any data and delegate data validation to # their inner estimator(s). DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE = [ "AdaBoostClassifier", "AdaBoostRegressor", "BaggingClassifier", "BaggingRegressor", "ClassifierChain", # data validation is necessary "IterativeImputer", "OneVsOneClassifier", # input validation can't be avoided "RANSACRegressor", "RFE", "RFECV", "RegressorChain", # data validation is necessary "SelfTrainingClassifier", "SequentialFeatureSelector", # not applicable (2D data mandatory) ] DATA_VALIDATION_META_ESTIMATORS = [ est for est in _generate_meta_estimator_instances_with_pipeline() if est.__class__.__name__ not in DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE ] def _get_meta_estimator_id(estimator): return estimator.__class__.__name__ @pytest.mark.parametrize( "estimator", DATA_VALIDATION_META_ESTIMATORS, ids=_get_meta_estimator_id ) def test_meta_estimators_delegate_data_validation(estimator): # Check that meta-estimators delegate data validation to the inner # estimator(s). rng = np.random.RandomState(0) set_random_state(estimator) n_samples = 30 X = rng.choice(np.array(["aa", "bb", "cc"], dtype=object), size=n_samples) if is_regressor(estimator): y = rng.normal(size=n_samples) else: y = rng.randint(3, size=n_samples) # We convert to lists to make sure it works on array-like X = _enforce_estimator_tags_x(estimator, X).tolist() y = _enforce_estimator_tags_y(estimator, y).tolist() # Calling fit should not raise any data validation exception since X is a # valid input datastructure for the first step of the pipeline passed as # base estimator to the meta estimator. estimator.fit(X, y) # n_features_in_ should not be defined since data is not tabular data. assert not hasattr(estimator, "n_features_in_")