""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # Giorgio Patrini # License: BSD 3 clause import warnings import numpy as np from scipy import linalg, sparse from . import check_random_state from ._logistic_sigmoid import _log_logistic_sigmoid from .fixes import np_version, parse_version from .sparsefuncs_fast import csr_row_norms from .validation import check_array def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Faster than norm(x) ** 2. Parameters ---------- x : array-like Returns ------- float The Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). """ x = np.ravel(x, order="K") if np.issubdtype(x.dtype, np.integer): warnings.warn( "Array type is integer, np.dot may overflow. " "Data should be float type to avoid this issue", UserWarning, ) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. Parameters ---------- X : array-like The input array. squared : bool, default=False If True, return squared norms. Returns ------- array-like The row-wise (squared) Euclidean norm of X. """ if sparse.issparse(X): if not isinstance(X, sparse.csr_matrix): X = sparse.csr_matrix(X) norms = csr_row_norms(X) else: norms = np.einsum("ij,ij->i", X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric. Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. Parameters ---------- A : array-like The matrix. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def density(w, **kwargs): """Compute density of a sparse vector. Parameters ---------- w : array-like The sparse vector. Returns ------- float The density of w, between 0 and 1. """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, *, dense_output=False): """Dot product that handle the sparse matrix case correctly. Parameters ---------- a : {ndarray, sparse matrix} b : {ndarray, sparse matrix} dense_output : bool, default=False When False, ``a`` and ``b`` both being sparse will yield sparse output. When True, output will always be a dense array. Returns ------- dot_product : {ndarray, sparse matrix} Sparse if ``a`` and ``b`` are sparse and ``dense_output=False``. """ if a.ndim > 2 or b.ndim > 2: if sparse.issparse(a): # sparse is always 2D. Implies b is 3D+ # [i, j] @ [k, ..., l, m, n] -> [i, k, ..., l, n] b_ = np.rollaxis(b, -2) b_2d = b_.reshape((b.shape[-2], -1)) ret = a @ b_2d ret = ret.reshape(a.shape[0], *b_.shape[1:]) elif sparse.issparse(b): # sparse is always 2D. Implies a is 3D+ # [k, ..., l, m] @ [i, j] -> [k, ..., l, j] a_2d = a.reshape(-1, a.shape[-1]) ret = a_2d @ b ret = ret.reshape(*a.shape[:-1], b.shape[1]) else: ret = np.dot(a, b) else: ret = a @ b if ( sparse.issparse(a) and sparse.issparse(b) and dense_output and hasattr(ret, "toarray") ): return ret.toarray() return ret def randomized_range_finder( A, *, size, n_iter, power_iteration_normalizer="auto", random_state=None ): """Compute an orthonormal matrix whose range approximates the range of A. Parameters ---------- A : 2D array The input data matrix. size : int Size of the return array. n_iter : int Number of power iterations used to stabilize the result. power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), 'none' (the fastest but numerically unstable when `n_iter` is large, e.g. typically 5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The 'auto' mode applies no normalization if `n_iter` <= 2 and switches to LU otherwise. .. versionadded:: 0.18 random_state : int, RandomState instance or None, default=None The seed of the pseudo random number generator to use when shuffling the data, i.e. getting the random vectors to initialize the algorithm. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. Returns ------- Q : ndarray A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ random_state = check_random_state(random_state) # Generating normal random vectors with shape: (A.shape[1], size) Q = random_state.normal(size=(A.shape[1], size)) if A.dtype.kind == "f": # Ensure f32 is preserved as f32 Q = Q.astype(A.dtype, copy=False) # Deal with "auto" mode if power_iteration_normalizer == "auto": if n_iter <= 2: power_iteration_normalizer = "none" else: power_iteration_normalizer = "LU" # Perform power iterations with Q to further 'imprint' the top # singular vectors of A in Q for i in range(n_iter): if power_iteration_normalizer == "none": Q = safe_sparse_dot(A, Q) Q = safe_sparse_dot(A.T, Q) elif power_iteration_normalizer == "LU": Q, _ = linalg.lu(safe_sparse_dot(A, Q), permute_l=True) Q, _ = linalg.lu(safe_sparse_dot(A.T, Q), permute_l=True) elif power_iteration_normalizer == "QR": Q, _ = linalg.qr(safe_sparse_dot(A, Q), mode="economic") Q, _ = linalg.qr(safe_sparse_dot(A.T, Q), mode="economic") # Sample the range of A using by linear projection of Q # Extract an orthonormal basis Q, _ = linalg.qr(safe_sparse_dot(A, Q), mode="economic") return Q def randomized_svd( M, n_components, *, n_oversamples=10, n_iter="auto", power_iteration_normalizer="auto", transpose="auto", flip_sign=True, random_state="warn", ): """Computes a truncated randomized SVD. This method solves the fixed-rank approximation problem described in the Halko et al paper (problem (1.5), p5). Parameters ---------- M : {ndarray, sparse matrix} Matrix to decompose. n_components : int Number of singular values and vectors to extract. n_oversamples : int, default=10 Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of singular vectors and singular values. Users might wish to increase this parameter up to `2*k - n_components` where k is the effective rank, for large matrices, noisy problems, matrices with slowly decaying spectrums, or to increase precision accuracy. See Halko et al (pages 5, 23 and 26). n_iter : int or 'auto', default='auto' Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) in which case `n_iter` is set to 7. This improves precision with few components. Note that in general users should rather increase `n_oversamples` before increasing `n_iter` as the principle of the randomized method is to avoid usage of these more costly power iterations steps. When `n_components` is equal or greater to the effective matrix rank and the spectrum does not present a slow decay, `n_iter=0` or `1` should even work fine in theory (see Halko et al paper, page 9). .. versionchanged:: 0.18 power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), 'none' (the fastest but numerically unstable when `n_iter` is large, e.g. typically 5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The 'auto' mode applies no normalization if `n_iter` <= 2 and switches to LU otherwise. .. versionadded:: 0.18 transpose : bool or 'auto', default='auto' Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case. .. versionchanged:: 0.18 flip_sign : bool, default=True The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state : int, RandomState instance or None, default='warn' The seed of the pseudo random number generator to use when shuffling the data, i.e. getting the random vectors to initialize the algorithm. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. .. versionchanged:: 1.2 The previous behavior (`random_state=0`) is deprecated, and from v1.2 the default value will be `random_state=None`. Set the value of `random_state` explicitly to suppress the deprecation warning. Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). To increase the precision it is recommended to increase `n_oversamples`, up to `2*k-n_components` where k is the effective rank. Usually, `n_components` is chosen to be greater than k so increasing `n_oversamples` up to `n_components` should be enough. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions (Algorithm 4.3) Halko, et al., 2009 https://arxiv.org/abs/0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert * An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ if isinstance(M, (sparse.lil_matrix, sparse.dok_matrix)): warnings.warn( "Calculating SVD of a {} is expensive. " "csr_matrix is more efficient.".format(type(M).__name__), sparse.SparseEfficiencyWarning, ) if random_state == "warn": warnings.warn( "If 'random_state' is not supplied, the current default " "is to use 0 as a fixed seed. This will change to " "None in version 1.2 leading to non-deterministic results " "that better reflect nature of the randomized_svd solver. " "If you want to silence this warning, set 'random_state' " "to an integer seed or to None explicitly depending " "if you want your code to be deterministic or not.", FutureWarning, ) random_state = 0 random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if n_iter == "auto": # Checks if the number of iterations is explicitly specified # Adjust n_iter. 7 was found a good compromise for PCA. See #5299 n_iter = 7 if n_components < 0.1 * min(M.shape) else 4 if transpose == "auto": transpose = n_samples < n_features if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder( M, size=n_random, n_iter=n_iter, power_iteration_normalizer=power_iteration_normalizer, random_state=random_state, ) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, Vt = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: if not transpose: U, Vt = svd_flip(U, Vt) else: # In case of transpose u_based_decision=false # to actually flip based on u and not v. U, Vt = svd_flip(U, Vt, u_based_decision=False) if transpose: # transpose back the results according to the input convention return Vt[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], Vt[:n_components, :] def _randomized_eigsh( M, n_components, *, n_oversamples=10, n_iter="auto", power_iteration_normalizer="auto", selection="module", random_state=None, ): """Computes a truncated eigendecomposition using randomized methods This method solves the fixed-rank approximation problem described in the Halko et al paper. The choice of which components to select can be tuned with the `selection` parameter. .. versionadded:: 0.24 Parameters ---------- M : ndarray or sparse matrix Matrix to decompose, it should be real symmetric square or complex hermitian n_components : int Number of eigenvalues and vectors to extract. n_oversamples : int, default=10 Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of eigenvectors and eigenvalues. Users might wish to increase this parameter up to `2*k - n_components` where k is the effective rank, for large matrices, noisy problems, matrices with slowly decaying spectrums, or to increase precision accuracy. See Halko et al (pages 5, 23 and 26). n_iter : int or 'auto', default='auto' Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) in which case `n_iter` is set to 7. This improves precision with few components. Note that in general users should rather increase `n_oversamples` before increasing `n_iter` as the principle of the randomized method is to avoid usage of these more costly power iterations steps. When `n_components` is equal or greater to the effective matrix rank and the spectrum does not present a slow decay, `n_iter=0` or `1` should even work fine in theory (see Halko et al paper, page 9). power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), 'none' (the fastest but numerically unstable when `n_iter` is large, e.g. typically 5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The 'auto' mode applies no normalization if `n_iter` <= 2 and switches to LU otherwise. selection : {'value', 'module'}, default='module' Strategy used to select the n components. When `selection` is `'value'` (not yet implemented, will become the default when implemented), the components corresponding to the n largest eigenvalues are returned. When `selection` is `'module'`, the components corresponding to the n eigenvalues with largest modules are returned. random_state : int, RandomState instance, default=None The seed of the pseudo random number generator to use when shuffling the data, i.e. getting the random vectors to initialize the algorithm. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. Notes ----- This algorithm finds a (usually very good) approximate truncated eigendecomposition using randomized methods to speed up the computations. This method is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). To increase the precision it is recommended to increase `n_oversamples`, up to `2*k-n_components` where k is the effective rank. Usually, `n_components` is chosen to be greater than k so increasing `n_oversamples` up to `n_components` should be enough. Strategy 'value': not implemented yet. Algorithms 5.3, 5.4 and 5.5 in the Halko et al paper should provide good condidates for a future implementation. Strategy 'module': The principle is that for diagonalizable matrices, the singular values and eigenvalues are related: if t is an eigenvalue of A, then :math:`|t|` is a singular value of A. This method relies on a randomized SVD to find the n singular components corresponding to the n singular values with largest modules, and then uses the signs of the singular vectors to find the true sign of t: if the sign of left and right singular vectors are different then the corresponding eigenvalue is negative. Returns ------- eigvals : 1D array of shape (n_components,) containing the `n_components` eigenvalues selected (see ``selection`` parameter). eigvecs : 2D array of shape (M.shape[0], n_components) containing the `n_components` eigenvectors corresponding to the `eigvals`, in the corresponding order. Note that this follows the `scipy.linalg.eigh` convention. See Also -------- :func:`randomized_svd` References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions (Algorithm 4.3 for strategy 'module') Halko, et al., 2009 https://arxiv.org/abs/0909.4061 """ if selection == "value": # pragma: no cover # to do : an algorithm can be found in the Halko et al reference raise NotImplementedError() elif selection == "module": # Note: no need for deterministic U and Vt (flip_sign=True), # as we only use the dot product UVt afterwards U, S, Vt = randomized_svd( M, n_components=n_components, n_oversamples=n_oversamples, n_iter=n_iter, power_iteration_normalizer=power_iteration_normalizer, flip_sign=False, random_state=random_state, ) eigvecs = U[:, :n_components] eigvals = S[:n_components] # Conversion of Singular values into Eigenvalues: # For any eigenvalue t, the corresponding singular value is |t|. # So if there is a negative eigenvalue t, the corresponding singular # value will be -t, and the left (U) and right (V) singular vectors # will have opposite signs. # Fastest way: see diag_VtU = np.einsum("ji,ij->j", Vt[:n_components, :], U[:, :n_components]) signs = np.sign(diag_VtU) eigvals = eigvals * signs else: # pragma: no cover raise ValueError("Invalid `selection`: %r" % selection) return eigvals, eigvecs def weighted_mode(a, w, *, axis=0): """Returns an array of the weighted modal (most common) value in a. If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array-like n-dimensional array of which to find mode(s). w : array-like n-dimensional array of weights for each value. axis : int, default=0 Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([4.]), array([3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([2.]), array([3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3.5. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) if a.shape != w.shape: w = np.full(a.shape, w, dtype=w.dtype) scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = a == score template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray of shape (M, len(arrays)), default=None Array to place the cartesian product in. Returns ------- out : ndarray of shape (M, len(arrays)) Array containing the cartesian products formed of input arrays. Notes ----- This function may not be used on more than 32 arrays because the underlying numpy functions do not support it. Examples -------- >>> from sklearn.utils.extmath import cartesian >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u : ndarray u and v are the output of `linalg.svd` or :func:`~sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. v : ndarray u and v are the output of `linalg.svd` or :func:`~sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. The input v should really be called vt to be consistent with scipy's output. u_based_decision : bool, default=True If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, range(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[range(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``scipy.special.expit``. Parameters ---------- X : array-like of shape (M, N) or (M,) Argument to the logistic function. out : array-like of shape (M, N) or (M,), default=None Preallocated output array. Returns ------- out : ndarray of shape (M, N) or (M,) Log of the logistic function evaluated at every point in x. Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = np.atleast_2d(X) X = check_array(X, dtype=np.float64) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def softmax(X, copy=True): """ Calculate the softmax function. The softmax function is calculated by np.exp(X) / np.sum(np.exp(X), axis=1) This will cause overflow when large values are exponentiated. Hence the largest value in each row is subtracted from each data point to prevent this. Parameters ---------- X : array-like of float of shape (M, N) Argument to the logistic function. copy : bool, default=True Copy X or not. Returns ------- out : ndarray of shape (M, N) Softmax function evaluated at every point in x. """ if copy: X = np.copy(X) max_prob = np.max(X, axis=1).reshape((-1, 1)) X -= max_prob np.exp(X, X) sum_prob = np.sum(X, axis=1).reshape((-1, 1)) X /= sum_prob return X def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`. Parameters ---------- X : array-like The matrix to make non-negative. min_value : float, default=0 The threshold value. Returns ------- array-like The thresholded array. Raises ------ ValueError When X is sparse. """ min_ = X.min() if min_ < min_value: if sparse.issparse(X): raise ValueError( "Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse." ) X = X + (min_value - min_) return X # Use at least float64 for the accumulating functions to avoid precision issue # see https://github.com/numpy/numpy/issues/9393. The float64 is also retained # as it is in case the float overflows def _safe_accumulator_op(op, x, *args, **kwargs): """ This function provides numpy accumulator functions with a float64 dtype when used on a floating point input. This prevents accumulator overflow on smaller floating point dtypes. Parameters ---------- op : function A numpy accumulator function such as np.mean or np.sum. x : ndarray A numpy array to apply the accumulator function. *args : positional arguments Positional arguments passed to the accumulator function after the input x. **kwargs : keyword arguments Keyword arguments passed to the accumulator function. Returns ------- result The output of the accumulator function passed to this function. """ if np.issubdtype(x.dtype, np.floating) and x.dtype.itemsize < 8: result = op(x, *args, **kwargs, dtype=np.float64) else: result = op(x, *args, **kwargs) return result def _incremental_mean_and_var( X, last_mean, last_variance, last_sample_count, sample_weight=None ): """Calculate mean update and a Youngs and Cramer variance update. If sample_weight is given, the weighted mean and variance is computed. Update a given mean and (possibly) variance according to new data given in X. last_mean is always required to compute the new mean. If last_variance is None, no variance is computed and None return for updated_variance. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like of shape (n_samples, n_features) Data to use for variance update. last_mean : array-like of shape (n_features,) last_variance : array-like of shape (n_features,) last_sample_count : array-like of shape (n_features,) The number of samples encountered until now if sample_weight is None. If sample_weight is not None, this is the sum of sample_weight encountered. sample_weight : array-like of shape (n_samples,) or None Sample weights. If None, compute the unweighted mean/variance. Returns ------- updated_mean : ndarray of shape (n_features,) updated_variance : ndarray of shape (n_features,) None if last_variance was None. updated_sample_count : ndarray of shape (n_features,) Notes ----- NaNs are ignored during the algorithm. References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 Also, see the sparse implementation of this in `utils.sparsefuncs.incr_mean_variance_axis` and `utils.sparsefuncs_fast.incr_mean_variance_axis0` """ # old = stats until now # new = the current increment # updated = the aggregated stats last_sum = last_mean * last_sample_count X_nan_mask = np.isnan(X) if np.any(X_nan_mask): sum_op = np.nansum else: sum_op = np.sum if sample_weight is not None: if np_version >= parse_version("1.16.6"): # equivalent to np.nansum(X * sample_weight, axis=0) # safer because np.float64(X*W) != np.float64(X)*np.float64(W) # dtype arg of np.matmul only exists since version 1.16 new_sum = _safe_accumulator_op( np.matmul, sample_weight, np.where(X_nan_mask, 0, X) ) else: new_sum = _safe_accumulator_op( np.nansum, X * sample_weight[:, None], axis=0 ) new_sample_count = _safe_accumulator_op( np.sum, sample_weight[:, None] * (~X_nan_mask), axis=0 ) else: new_sum = _safe_accumulator_op(sum_op, X, axis=0) n_samples = X.shape[0] new_sample_count = n_samples - np.sum(X_nan_mask, axis=0) updated_sample_count = last_sample_count + new_sample_count updated_mean = (last_sum + new_sum) / updated_sample_count if last_variance is None: updated_variance = None else: T = new_sum / new_sample_count temp = X - T if sample_weight is not None: if np_version >= parse_version("1.16.6"): # equivalent to np.nansum((X-T)**2 * sample_weight, axis=0) # safer because np.float64(X*W) != np.float64(X)*np.float64(W) # dtype arg of np.matmul only exists since version 1.16 correction = _safe_accumulator_op( np.matmul, sample_weight, np.where(X_nan_mask, 0, temp) ) temp **= 2 new_unnormalized_variance = _safe_accumulator_op( np.matmul, sample_weight, np.where(X_nan_mask, 0, temp) ) else: correction = _safe_accumulator_op( sum_op, temp * sample_weight[:, None], axis=0 ) temp *= temp new_unnormalized_variance = _safe_accumulator_op( sum_op, temp * sample_weight[:, None], axis=0 ) else: correction = _safe_accumulator_op(sum_op, temp, axis=0) temp **= 2 new_unnormalized_variance = _safe_accumulator_op(sum_op, temp, axis=0) # correction term of the corrected 2 pass algorithm. # See "Algorithms for computing the sample variance: analysis # and recommendations", by Chan, Golub, and LeVeque. new_unnormalized_variance -= correction ** 2 / new_sample_count last_unnormalized_variance = last_variance * last_sample_count with np.errstate(divide="ignore", invalid="ignore"): last_over_new_count = last_sample_count / new_sample_count updated_unnormalized_variance = ( last_unnormalized_variance + new_unnormalized_variance + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum) ** 2 ) zeros = last_sample_count == 0 updated_unnormalized_variance[zeros] = new_unnormalized_variance[zeros] updated_variance = updated_unnormalized_variance / updated_sample_count return updated_mean, updated_variance, updated_sample_count def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility. Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08): """Use high precision for cumsum and check that final value matches sum. Parameters ---------- arr : array-like To be cumulatively summed as flat. axis : int, default=None Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. rtol : float, default=1e-05 Relative tolerance, see ``np.allclose``. atol : float, default=1e-08 Absolute tolerance, see ``np.allclose``. """ out = np.cumsum(arr, axis=axis, dtype=np.float64) expected = np.sum(arr, axis=axis, dtype=np.float64) if not np.all( np.isclose( out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True ) ): warnings.warn( "cumsum was found to be unstable: " "its last element does not correspond to sum", RuntimeWarning, ) return out