"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fix is no longer needed. """ # Authors: Emmanuelle Gouillart # Gael Varoquaux # Fabian Pedregosa # Lars Buitinck # # License: BSD 3 clause from functools import update_wrapper import functools import sklearn import numpy as np import scipy.sparse as sp import scipy import scipy.stats from scipy.sparse.linalg import lsqr as sparse_lsqr # noqa import threadpoolctl from .._config import config_context, get_config from ..externals._packaging.version import parse as parse_version np_version = parse_version(np.__version__) sp_version = parse_version(scipy.__version__) if sp_version >= parse_version("1.4"): from scipy.sparse.linalg import lobpcg else: # Backport of lobpcg functionality from scipy 1.4.0, can be removed # once support for sp_version < parse_version('1.4') is dropped # mypy error: Name 'lobpcg' already defined (possibly by an import) from ..externals._lobpcg import lobpcg # type: ignore # noqa try: from scipy.optimize._linesearch import line_search_wolfe2, line_search_wolfe1 except ImportError: # SciPy < 1.8 from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1 # type: ignore # noqa def _object_dtype_isnan(X): return X != X # TODO: replace by copy=False, when only scipy > 1.1 is supported. def _astype_copy_false(X): """Returns the copy=False parameter for {ndarray, csr_matrix, csc_matrix}.astype when possible, otherwise don't specify """ if sp_version >= parse_version("1.1") or not sp.issparse(X): return {"copy": False} else: return {} def _joblib_parallel_args(**kwargs): """Set joblib.Parallel arguments in a compatible way for 0.11 and 0.12+ For joblib 0.11 this maps both ``prefer`` and ``require`` parameters to a specific ``backend``. Parameters ---------- prefer : str in {'processes', 'threads'} or None Soft hint to choose the default backend if no specific backend was selected with the parallel_backend context manager. require : 'sharedmem' or None Hard condstraint to select the backend. If set to 'sharedmem', the selected backend will be single-host and thread-based even if the user asked for a non-thread based backend with parallel_backend. See joblib.Parallel documentation for more details """ import joblib if parse_version(joblib.__version__) >= parse_version("0.12"): return kwargs extra_args = set(kwargs.keys()).difference({"prefer", "require"}) if extra_args: raise NotImplementedError( "unhandled arguments %s with joblib %s" % (list(extra_args), joblib.__version__) ) args = {} if "prefer" in kwargs: prefer = kwargs["prefer"] if prefer not in ["threads", "processes", None]: raise ValueError("prefer=%s is not supported" % prefer) args["backend"] = { "threads": "threading", "processes": "multiprocessing", None: None, }[prefer] if "require" in kwargs: require = kwargs["require"] if require not in [None, "sharedmem"]: raise ValueError("require=%s is not supported" % require) if require == "sharedmem": args["backend"] = "threading" return args class loguniform(scipy.stats.reciprocal): """A class supporting log-uniform random variables. Parameters ---------- low : float The minimum value high : float The maximum value Methods ------- rvs(self, size=None, random_state=None) Generate log-uniform random variables The most useful method for Scikit-learn usage is highlighted here. For a full list, see `scipy.stats.reciprocal `_. This list includes all functions of ``scipy.stats`` continuous distributions such as ``pdf``. Notes ----- This class generates values between ``low`` and ``high`` or low <= loguniform(low, high).rvs() <= high The logarithmic probability density function (PDF) is uniform. When ``x`` is a uniformly distributed random variable between 0 and 1, ``10**x`` are random variables that are equally likely to be returned. This class is an alias to ``scipy.stats.reciprocal``, which uses the reciprocal distribution: https://en.wikipedia.org/wiki/Reciprocal_distribution Examples -------- >>> from sklearn.utils.fixes import loguniform >>> rv = loguniform(1e-3, 1e1) >>> rvs = rv.rvs(random_state=42, size=1000) >>> rvs.min() # doctest: +SKIP 0.0010435856341129003 >>> rvs.max() # doctest: +SKIP 9.97403052786026 """ def _take_along_axis(arr, indices, axis): """Implements a simplified version of np.take_along_axis if numpy version < 1.15""" if np_version >= parse_version("1.15"): return np.take_along_axis(arr=arr, indices=indices, axis=axis) else: if axis is None: arr = arr.flatten() if not np.issubdtype(indices.dtype, np.intp): raise IndexError("`indices` must be an integer array") if arr.ndim != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions" ) shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis + 1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr.shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim + 1 :] fancy_index.append(np.arange(n).reshape(ind_shape)) fancy_index = tuple(fancy_index) return arr[fancy_index] # remove when https://github.com/joblib/joblib/issues/1071 is fixed def delayed(function): """Decorator used to capture the arguments of a function.""" @functools.wraps(function) def delayed_function(*args, **kwargs): return _FuncWrapper(function), args, kwargs return delayed_function class _FuncWrapper: """ "Load the global configuration before calling the function.""" def __init__(self, function): self.function = function self.config = get_config() update_wrapper(self, self.function) def __call__(self, *args, **kwargs): with config_context(**self.config): return self.function(*args, **kwargs) def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0): """Implements a simplified linspace function as of numpy version >= 1.16. As of numpy 1.16, the arguments start and stop can be array-like and there is an optional argument `axis`. For simplicity, we only allow 1d array-like to be passed to start and stop. See: https://github.com/numpy/numpy/pull/12388 and numpy 1.16 release notes about start and stop arrays for linspace logspace and geomspace. Returns ------- out : ndarray of shape (num, n_start) or (num,) The output array with `n_start=start.shape[0]` columns. """ if np_version < parse_version("1.16"): start = np.asanyarray(start) * 1.0 stop = np.asanyarray(stop) * 1.0 dt = np.result_type(start, stop, float(num)) if dtype is None: dtype = dt if start.ndim == 0 == stop.ndim: return np.linspace( start=start, stop=stop, num=num, endpoint=endpoint, retstep=retstep, dtype=dtype, ) if start.ndim != 1 or stop.ndim != 1 or start.shape != stop.shape: raise ValueError("start and stop must be 1d array-like of same shape.") n_start = start.shape[0] out = np.empty((num, n_start), dtype=dtype) step = np.empty(n_start, dtype=np.float) for i in range(n_start): out[:, i], step[i] = np.linspace( start=start[i], stop=stop[i], num=num, endpoint=endpoint, retstep=True, dtype=dtype, ) if axis != 0: out = np.moveaxis(out, 0, axis) if retstep: return out, step else: return out else: return np.linspace( start=start, stop=stop, num=num, endpoint=endpoint, retstep=retstep, dtype=dtype, axis=axis, ) # Rename the `method` kwarg to `interpolation` for NumPy < 1.22, because # `interpolation` kwarg was deprecated in favor of `method` in NumPy >= 1.22. def _percentile(a, q, *, method="linear", **kwargs): return np.percentile(a, q, interpolation=method, **kwargs) if np_version < parse_version("1.22"): percentile = _percentile else: # >= 1.22 from numpy import percentile # type: ignore # noqa # compatibility fix for threadpoolctl >= 3.0.0 # since version 3 it's possible to setup a global threadpool controller to avoid # looping through all loaded shared libraries each time. # the global controller is created during the first call to threadpoolctl. def _get_threadpool_controller(): if not hasattr(threadpoolctl, "ThreadpoolController"): return None if not hasattr(sklearn, "_sklearn_threadpool_controller"): sklearn._sklearn_threadpool_controller = threadpoolctl.ThreadpoolController() return sklearn._sklearn_threadpool_controller def threadpool_limits(limits=None, user_api=None): controller = _get_threadpool_controller() if controller is not None: return controller.limit(limits=limits, user_api=user_api) else: return threadpoolctl.threadpool_limits(limits=limits, user_api=user_api) threadpool_limits.__doc__ = threadpoolctl.threadpool_limits.__doc__ def threadpool_info(): controller = _get_threadpool_controller() if controller is not None: return controller.info() else: return threadpoolctl.threadpool_info() threadpool_info.__doc__ = threadpoolctl.threadpool_info.__doc__