# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from collections.abc import Sequence from itertools import chain import warnings from scipy.sparse import issparse from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from .validation import check_array, _assert_all_finite def _unique_multiclass(y): if hasattr(y, "__array__"): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, accept_sparse=["csr", "csc", "coo"]).shape[1]) _FN_UNIQUE_LABELS = { "binary": _unique_multiclass, "multiclass": _unique_multiclass, "multilabel-indicator": _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels. We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes Returns ------- out : ndarray of shape (n_unique_labels,) An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError("No argument has been passed.") # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == {"binary", "multiclass"}: ys_types = {"multiclass"} if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if ( label_type == "multilabel-indicator" and len( set( check_array(y, accept_sparse=["csr", "csc", "coo"]).shape[1] for y in ys ) ) > 1 ): raise ValueError( "Multi-label binary indicator input with different numbers of labels" ) # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if len(set(isinstance(label, str) for label in ys_labels)) > 1: raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == "f" and np.all(y.astype(int) == y) def is_multilabel(y): """Check if ``y`` is in a multilabel format. Parameters ---------- y : ndarray of shape (n_samples,) Target values. Returns ------- out : bool Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, "__array__") or isinstance(y, Sequence): # DeprecationWarning will be replaced by ValueError, see NEP 34 # https://numpy.org/neps/nep-0034-infer-dtype-is-object.html with warnings.catch_warnings(): warnings.simplefilter("error", np.VisibleDeprecationWarning) try: y = np.asarray(y) except np.VisibleDeprecationWarning: # dtype=object should be provided explicitly for ragged arrays, # see NEP 34 y = np.array(y, dtype=object) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return ( len(y.data) == 0 or np.unique(y.data).size == 1 and ( y.dtype.kind in "biu" or _is_integral_float(np.unique(y.data)) # bool, int, uint ) ) else: labels = np.unique(y) return len(labels) < 3 and ( y.dtype.kind in "biu" or _is_integral_float(labels) # bool, int, uint ) def check_classification_targets(y): """Ensure that target y is of a non-regression type. Only the following target types (as defined in type_of_target) are allowed: 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', 'multilabel-sequences' Parameters ---------- y : array-like """ y_type = type_of_target(y) if y_type not in [ "binary", "multiclass", "multiclass-multioutput", "multilabel-indicator", "multilabel-sequences", ]: raise ValueError("Unknown label type: %r" % y_type) def type_of_target(y): """Determine the type of data indicated by the target. Note that this type is the most specific type that can be inferred. For example: * ``binary`` is more specific but compatible with ``multiclass``. * ``multiclass`` of integers is more specific but compatible with ``continuous``. * ``multilabel-indicator`` is more specific but compatible with ``multiclass-multioutput``. Parameters ---------- y : array-like Returns ------- target_type : str One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> from sklearn.utils.multiclass import type_of_target >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multilabel-indicator' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ( isinstance(y, Sequence) or issparse(y) or hasattr(y, "__array__") ) and not isinstance(y, str) if not valid: raise ValueError( "Expected array-like (array or non-string sequence), got %r" % y ) sparse_pandas = y.__class__.__name__ in ["SparseSeries", "SparseArray"] if sparse_pandas: raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'") if is_multilabel(y): return "multilabel-indicator" # DeprecationWarning will be replaced by ValueError, see NEP 34 # https://numpy.org/neps/nep-0034-infer-dtype-is-object.html with warnings.catch_warnings(): warnings.simplefilter("error", np.VisibleDeprecationWarning) try: y = np.asarray(y) except np.VisibleDeprecationWarning: # dtype=object should be provided explicitly for ragged arrays, # see NEP 34 y = np.asarray(y, dtype=object) # The old sequence of sequences format try: if ( not hasattr(y[0], "__array__") and isinstance(y[0], Sequence) and not isinstance(y[0], str) ): raise ValueError( "You appear to be using a legacy multi-label data" " representation. Sequence of sequences are no" " longer supported; use a binary array or sparse" " matrix instead - the MultiLabelBinarizer" " transformer can convert to this format." ) except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], str)): return "unknown" # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return "unknown" # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == "f" and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] _assert_all_finite(y) return "continuous" + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return "multiclass" + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return "binary" # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic. Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, "classes_", None) is None and classes is None: raise ValueError("classes must be passed on the first call to partial_fit.") elif classes is not None: if getattr(clf, "classes_", None) is not None: if not np.array_equal(clf.classes_, unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_) ) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data. Parameters ---------- y : {array-like, sparse matrix} of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- classes : list of size n_outputs of ndarray of size (n_classes,) List of classes for each column. n_classes : list of int of size n_outputs Number of classes in each column. class_prior : list of size n_outputs of ndarray of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if sample_weight is not None: sample_weight = np.asarray(sample_weight) if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k] : y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = sample_weight[col_nonzero] zeros_samp_weight_sum = np.sum(sample_weight) - np.sum(nz_samp_weight) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique( y.data[y.indptr[k] : y.indptr[k + 1]], return_inverse=True ) class_prior_k = np.bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its weight with the weight # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implicit zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = np.bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior) def _ovr_decision_function(predictions, confidences, n_classes): """Compute a continuous, tie-breaking OvR decision function from OvO. It is important to include a continuous value, not only votes, to make computing AUC or calibration meaningful. Parameters ---------- predictions : array-like of shape (n_samples, n_classifiers) Predicted classes for each binary classifier. confidences : array-like of shape (n_samples, n_classifiers) Decision functions or predicted probabilities for positive class for each binary classifier. n_classes : int Number of classes. n_classifiers must be ``n_classes * (n_classes - 1 ) / 2``. """ n_samples = predictions.shape[0] votes = np.zeros((n_samples, n_classes)) sum_of_confidences = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): sum_of_confidences[:, i] -= confidences[:, k] sum_of_confidences[:, j] += confidences[:, k] votes[predictions[:, k] == 0, i] += 1 votes[predictions[:, k] == 1, j] += 1 k += 1 # Monotonically transform the sum_of_confidences to (-1/3, 1/3) # and add it with votes. The monotonic transformation is # f: x -> x / (3 * (|x| + 1)), it uses 1/3 instead of 1/2 # to ensure that we won't reach the limits and change vote order. # The motivation is to use confidence levels as a way to break ties in # the votes without switching any decision made based on a difference # of 1 vote. transformed_confidences = sum_of_confidences / ( 3 * (np.abs(sum_of_confidences) + 1) ) return votes + transformed_confidences