import numpy as np import scipy.sparse as sp from itertools import product import pytest from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.utils.estimator_checks import _NotAnArray from sklearn.utils.fixes import parse_version from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.multiclass import _ovr_decision_function from sklearn.utils.metaestimators import _safe_split from sklearn.model_selection import ShuffleSplit from sklearn.svm import SVC from sklearn import datasets EXAMPLES = { "multilabel-indicator": [ # valid when the data is formatted as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), [[0, 1], [1, 0]], [[0, 1]], csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense [[-1, 1], [1, -1]], np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), _NotAnArray(np.array([[-3, 3], [3, -3]])), ], "multiclass": [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), _NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ["a", "b", "c"], np.array(["a", "b", "c"]), np.array(["a", "b", "c"], dtype=object), np.array(["a", "b", "c"], dtype=object), ], "multiclass-multioutput": [ [[1, 0, 2, 2], [1, 4, 2, 4]], [["a", "b"], ["c", "d"]], np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([["a", "b"], ["c", "d"]]), np.array([["a", "b"], ["c", "d"]]), np.array([["a", "b"], ["c", "d"]], dtype=object), np.array([[1, 0, 2]]), _NotAnArray(np.array([[1, 0, 2]])), ], "binary": [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), _NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ["a"], ["a", "b"], ["abc", "def"], np.array(["abc", "def"]), ["a", "b"], np.array(["abc", "def"], dtype=object), ], "continuous": [ [1e-5], [0, 0.5], np.array([[0], [0.5]]), np.array([[0], [0.5]], dtype=np.float32), ], "continuous-multioutput": [ np.array([[0, 0.5], [0.5, 0]]), np.array([[0, 0.5], [0.5, 0]], dtype=np.float32), np.array([[0, 0.5]]), ], "unknown": [ [[]], [()], # sequence of sequences that weren't supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [{1, 2, 3}, {1, 2}], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: "a", 1: "b"}, {0: "a"}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ], } NON_ARRAY_LIKE_EXAMPLES = [ {1, 2, 3}, {0: "a", 1: "b"}, {0: [5], 1: [5]}, "abc", frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype="object"), _NotAnArray(np.array([[], [1, 2]], dtype="object")), ] def test_unique_labels(): # Empty iterable with pytest.raises(ValueError): unique_labels() # Multiclass problem assert_array_equal(unique_labels(range(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal( unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3) ) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], range(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix with pytest.raises(ValueError): unique_labels([4, 0, 2], np.ones((5, 5))) with pytest.raises(ValueError): unique_labels(np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: with pytest.raises(ValueError): unique_labels(example) for y_type in [ "unknown", "continuous", "continuous-multioutput", "multiclass-multioutput", ]: for example in EXAMPLES[y_type]: with pytest.raises(ValueError): unique_labels(example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product( EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"] ) for y_multilabel, y_multiclass in mix_clf_format: with pytest.raises(ValueError): unique_labels(y_multiclass, y_multilabel) with pytest.raises(ValueError): unique_labels(y_multilabel, y_multiclass) with pytest.raises(ValueError): unique_labels([[1, 2]], [["a", "d"]]) with pytest.raises(ValueError): unique_labels(["1", 2]) with pytest.raises(ValueError): unique_labels([["1", 2], [1, 3]]) with pytest.raises(ValueError): unique_labels([["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in EXAMPLES.items(): if group in ["multilabel-indicator"]: dense_exp = True else: dense_exp = False for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == "multilabel-indicator" and issparse(example): sparse_exp = True else: sparse_exp = False if issparse(example) or ( hasattr(example, "__array__") and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in "biuf" and np.asarray(example).shape[1] > 0 ): examples_sparse = [ sparse_matrix(example) for sparse_matrix in [ coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix, ] ] for exmpl_sparse in examples_sparse: assert sparse_exp == is_multilabel( exmpl_sparse ), "is_multilabel(%r) should be %s" % (exmpl_sparse, sparse_exp) # Densify sparse examples before testing if issparse(example): example = example.toarray() assert dense_exp == is_multilabel( example ), "is_multilabel(%r) should be %s" % (example, dense_exp) def test_check_classification_targets(): for y_type in EXAMPLES.keys(): if y_type in ["unknown", "continuous", "continuous-multioutput"]: for example in EXAMPLES[y_type]: msg = "Unknown label type: " with pytest.raises(ValueError, match=msg): check_classification_targets(example) else: for example in EXAMPLES[y_type]: check_classification_targets(example) # @ignore_warnings def test_type_of_target(): for group, group_examples in EXAMPLES.items(): for example in group_examples: assert ( type_of_target(example) == group ), "type_of_target(%r) should be %r, got %r" % ( example, group, type_of_target(example), ) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = r"Expected array-like \(array or non-string sequence\).*" with pytest.raises(ValueError, match=msg_regex): type_of_target(example) for example in MULTILABEL_SEQUENCES: msg = ( "You appear to be using a legacy multi-label data " "representation. Sequence of sequences are no longer supported;" " use a binary array or sparse matrix instead." ) with pytest.raises(ValueError, match=msg): type_of_target(example) def test_type_of_target_pandas_sparse(): pd = pytest.importorskip("pandas") if parse_version(pd.__version__) >= parse_version("0.25"): pd_sparse_array = pd.arrays.SparseArray else: pd_sparse_array = pd.SparseArray y = pd_sparse_array([1, np.nan, np.nan, 1, np.nan]) msg = "y cannot be class 'SparseSeries' or 'SparseArray'" with pytest.raises(ValueError, match=msg): type_of_target(y) def test_class_distribution(): y = np.array( [ [1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1], ] ) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3 / 6, 2 / 6, 1 / 6], [1 / 3, 1 / 3, 1 / 3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution( y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0] ) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution( y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0] ) class_prior_expected = [[4 / 9, 3 / 9, 2 / 9], [2 / 9, 4 / 9, 3 / 9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = datasets.load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = ShuffleSplit(test_size=0.25, random_state=0) train, test = list(cv.split(X))[0] X_train, y_train = _safe_split(clf, X, y, train) K_train, y_train2 = _safe_split(clfp, K, y, train) assert_array_almost_equal(K_train, np.dot(X_train, X_train.T)) assert_array_almost_equal(y_train, y_train2) X_test, y_test = _safe_split(clf, X, y, test, train) K_test, y_test2 = _safe_split(clfp, K, y, test, train) assert_array_almost_equal(K_test, np.dot(X_test, X_train.T)) assert_array_almost_equal(y_test, y_test2) def test_ovr_decision_function(): # test properties for ovr decision function predictions = np.array([[0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]) confidences = np.array( [[-1e16, 0, -1e16], [1.0, 2.0, -3.0], [-5.0, 2.0, 5.0], [-0.5, 0.2, 0.5]] ) n_classes = 3 dec_values = _ovr_decision_function(predictions, confidences, n_classes) # check that the decision values are within 0.5 range of the votes votes = np.array([[1, 0, 2], [1, 1, 1], [1, 0, 2], [1, 0, 2]]) assert_allclose(votes, dec_values, atol=0.5) # check that the prediction are what we expect # highest vote or highest confidence if there is a tie. # for the second sample we have a tie (should be won by 1) expected_prediction = np.array([2, 1, 2, 2]) assert_array_equal(np.argmax(dec_values, axis=1), expected_prediction) # third and fourth sample have the same vote but third sample # has higher confidence, this should reflect on the decision values assert dec_values[2, 2] > dec_values[3, 2] # assert subset invariance. dec_values_one = [ _ovr_decision_function( np.array([predictions[i]]), np.array([confidences[i]]), n_classes )[0] for i in range(4) ] assert_allclose(dec_values, dec_values_one, atol=1e-6)