from copy import copy from itertools import chain import warnings import string import timeit import pytest import numpy as np import scipy.sparse as sp from sklearn.utils._testing import ( assert_array_equal, assert_allclose_dense_sparse, assert_no_warnings, _convert_container, ) from sklearn.utils import check_random_state from sklearn.utils import _determine_key_type from sklearn.utils import deprecated from sklearn.utils import gen_batches from sklearn.utils import _get_column_indices from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import _safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils import _message_with_time, _print_elapsed_time from sklearn.utils import get_chunk_n_rows from sklearn.utils import is_scalar_nan from sklearn.utils import _to_object_array from sklearn.utils import _approximate_mode from sklearn.utils.fixes import parse_version from sklearn.utils._mocking import MockDataFrame from sklearn.utils._testing import SkipTest from sklearn import config_context # toy array X_toy = np.arange(9).reshape((3, 3)) def test_make_rng(): # Check the check_random_state utility function behavior assert check_random_state(None) is np.random.mtrand._rand assert check_random_state(np.random) is np.random.mtrand._rand rng_42 = np.random.RandomState(42) assert check_random_state(42).randint(100) == rng_42.randint(100) rng_42 = np.random.RandomState(42) assert check_random_state(rng_42) is rng_42 rng_42 = np.random.RandomState(42) assert check_random_state(43).randint(100) != rng_42.randint(100) with pytest.raises(ValueError): check_random_state("some invalid seed") def test_gen_batches(): # Make sure gen_batches errors on invalid batch_size assert_array_equal(list(gen_batches(4, 2)), [slice(0, 2, None), slice(2, 4, None)]) msg_zero = "gen_batches got batch_size=0, must be positive" with pytest.raises(ValueError, match=msg_zero): next(gen_batches(4, 0)) msg_float = "gen_batches got batch_size=0.5, must be an integer" with pytest.raises(TypeError, match=msg_float): next(gen_batches(4, 0.5)) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from https://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert spam == "spam" # function must remain usable assert len(w) == 1 assert issubclass(w[0].category, FutureWarning) assert "deprecated" in str(w[0].message).lower() # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham: SPAM = 1 ham = Ham() assert hasattr(ham, "SPAM") assert len(w) == 1 assert issubclass(w[0].category, FutureWarning) assert "deprecated" in str(w[0].message).lower() def test_resample(): # Border case not worth mentioning in doctests assert resample() is None # Check that invalid arguments yield ValueError with pytest.raises(ValueError): resample([0], [0, 1]) with pytest.raises(ValueError): resample([0, 1], [0, 1], replace=False, n_samples=3) # Issue:6581, n_samples can be more when replace is True (default). assert len(resample([1, 2], n_samples=5)) == 5 def test_resample_stratified(): # Make sure resample can stratify rng = np.random.RandomState(0) n_samples = 100 p = 0.9 X = rng.normal(size=(n_samples, 1)) y = rng.binomial(1, p, size=n_samples) _, y_not_stratified = resample(X, y, n_samples=10, random_state=0, stratify=None) assert np.all(y_not_stratified == 1) _, y_stratified = resample(X, y, n_samples=10, random_state=0, stratify=y) assert not np.all(y_stratified == 1) assert np.sum(y_stratified) == 9 # all 1s, one 0 def test_resample_stratified_replace(): # Make sure stratified resampling supports the replace parameter rng = np.random.RandomState(0) n_samples = 100 X = rng.normal(size=(n_samples, 1)) y = rng.randint(0, 2, size=n_samples) X_replace, _ = resample( X, y, replace=True, n_samples=50, random_state=rng, stratify=y ) X_no_replace, _ = resample( X, y, replace=False, n_samples=50, random_state=rng, stratify=y ) assert np.unique(X_replace).shape[0] < 50 assert np.unique(X_no_replace).shape[0] == 50 # make sure n_samples can be greater than X.shape[0] if we sample with # replacement X_replace, _ = resample( X, y, replace=True, n_samples=1000, random_state=rng, stratify=y ) assert X_replace.shape[0] == 1000 assert np.unique(X_replace).shape[0] == 100 def test_resample_stratify_2dy(): # Make sure y can be 2d when stratifying rng = np.random.RandomState(0) n_samples = 100 X = rng.normal(size=(n_samples, 1)) y = rng.randint(0, 2, size=(n_samples, 2)) X, y = resample(X, y, n_samples=50, random_state=rng, stratify=y) assert y.ndim == 2 def test_resample_stratify_sparse_error(): # resample must be ndarray rng = np.random.RandomState(0) n_samples = 100 X = rng.normal(size=(n_samples, 2)) y = rng.randint(0, 2, size=n_samples) stratify = sp.csr_matrix(y) with pytest.raises(TypeError, match="A sparse matrix was passed"): X, y = resample(X, y, n_samples=50, random_state=rng, stratify=stratify) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert X[mask].shape[0] == 3 mask = safe_mask(X_csr, mask) assert X_csr[mask].shape[0] == 3 def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.0), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", "multiclass", "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: with pytest.raises(ValueError): column_or_1d(y) @pytest.mark.parametrize( "key, dtype", [ (0, "int"), ("0", "str"), (True, "bool"), (np.bool_(True), "bool"), ([0, 1, 2], "int"), (["0", "1", "2"], "str"), ((0, 1, 2), "int"), (("0", "1", "2"), "str"), (slice(None, None), None), (slice(0, 2), "int"), (np.array([0, 1, 2], dtype=np.int32), "int"), (np.array([0, 1, 2], dtype=np.int64), "int"), (np.array([0, 1, 2], dtype=np.uint8), "int"), ([True, False], "bool"), ((True, False), "bool"), (np.array([True, False]), "bool"), ("col_0", "str"), (["col_0", "col_1", "col_2"], "str"), (("col_0", "col_1", "col_2"), "str"), (slice("begin", "end"), "str"), (np.array(["col_0", "col_1", "col_2"]), "str"), (np.array(["col_0", "col_1", "col_2"], dtype=object), "str"), ], ) def test_determine_key_type(key, dtype): assert _determine_key_type(key) == dtype def test_determine_key_type_error(): with pytest.raises(ValueError, match="No valid specification of the"): _determine_key_type(1.0) def test_determine_key_type_slice_error(): with pytest.raises(TypeError, match="Only array-like or scalar are"): _determine_key_type(slice(0, 2, 1), accept_slice=False) @pytest.mark.parametrize("array_type", ["list", "array", "sparse", "dataframe"]) @pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"]) def test_safe_indexing_2d_container_axis_0(array_type, indices_type): indices = [1, 2] if indices_type == "slice" and isinstance(indices[1], int): indices[1] += 1 array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type) indices = _convert_container(indices, indices_type) subset = _safe_indexing(array, indices, axis=0) assert_allclose_dense_sparse( subset, _convert_container([[4, 5, 6], [7, 8, 9]], array_type) ) @pytest.mark.parametrize("array_type", ["list", "array", "series"]) @pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"]) def test_safe_indexing_1d_container(array_type, indices_type): indices = [1, 2] if indices_type == "slice" and isinstance(indices[1], int): indices[1] += 1 array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type) indices = _convert_container(indices, indices_type) subset = _safe_indexing(array, indices, axis=0) assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type)) @pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"]) @pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"]) @pytest.mark.parametrize("indices", [[1, 2], ["col_1", "col_2"]]) def test_safe_indexing_2d_container_axis_1(array_type, indices_type, indices): # validation of the indices # we make a copy because indices is mutable and shared between tests indices_converted = copy(indices) if indices_type == "slice" and isinstance(indices[1], int): indices_converted[1] += 1 columns_name = ["col_0", "col_1", "col_2"] array = _convert_container( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name ) indices_converted = _convert_container(indices_converted, indices_type) if isinstance(indices[0], str) and array_type != "dataframe": err_msg = ( "Specifying the columns using strings is only supported " "for pandas DataFrames" ) with pytest.raises(ValueError, match=err_msg): _safe_indexing(array, indices_converted, axis=1) else: subset = _safe_indexing(array, indices_converted, axis=1) assert_allclose_dense_sparse( subset, _convert_container([[2, 3], [5, 6], [8, 9]], array_type) ) @pytest.mark.parametrize("array_read_only", [True, False]) @pytest.mark.parametrize("indices_read_only", [True, False]) @pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"]) @pytest.mark.parametrize("indices_type", ["array", "series"]) @pytest.mark.parametrize( "axis, expected_array", [(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])] ) def test_safe_indexing_2d_read_only_axis_1( array_read_only, indices_read_only, array_type, indices_type, axis, expected_array ): array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) if array_read_only: array.setflags(write=False) array = _convert_container(array, array_type) indices = np.array([1, 2]) if indices_read_only: indices.setflags(write=False) indices = _convert_container(indices, indices_type) subset = _safe_indexing(array, indices, axis=axis) assert_allclose_dense_sparse(subset, _convert_container(expected_array, array_type)) @pytest.mark.parametrize("array_type", ["list", "array", "series"]) @pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"]) def test_safe_indexing_1d_container_mask(array_type, indices_type): indices = [False] + [True] * 2 + [False] * 6 array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type) indices = _convert_container(indices, indices_type) subset = _safe_indexing(array, indices, axis=0) assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type)) @pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"]) @pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"]) @pytest.mark.parametrize( "axis, expected_subset", [(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])], ) def test_safe_indexing_2d_mask(array_type, indices_type, axis, expected_subset): columns_name = ["col_0", "col_1", "col_2"] array = _convert_container( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name ) indices = [False, True, True] indices = _convert_container(indices, indices_type) subset = _safe_indexing(array, indices, axis=axis) assert_allclose_dense_sparse( subset, _convert_container(expected_subset, array_type) ) @pytest.mark.parametrize( "array_type, expected_output_type", [ ("list", "list"), ("array", "array"), ("sparse", "sparse"), ("dataframe", "series"), ], ) def test_safe_indexing_2d_scalar_axis_0(array_type, expected_output_type): array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type) indices = 2 subset = _safe_indexing(array, indices, axis=0) expected_array = _convert_container([7, 8, 9], expected_output_type) assert_allclose_dense_sparse(subset, expected_array) @pytest.mark.parametrize("array_type", ["list", "array", "series"]) def test_safe_indexing_1d_scalar(array_type): array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type) indices = 2 subset = _safe_indexing(array, indices, axis=0) assert subset == 3 @pytest.mark.parametrize( "array_type, expected_output_type", [("array", "array"), ("sparse", "sparse"), ("dataframe", "series")], ) @pytest.mark.parametrize("indices", [2, "col_2"]) def test_safe_indexing_2d_scalar_axis_1(array_type, expected_output_type, indices): columns_name = ["col_0", "col_1", "col_2"] array = _convert_container( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name ) if isinstance(indices, str) and array_type != "dataframe": err_msg = ( "Specifying the columns using strings is only supported " "for pandas DataFrames" ) with pytest.raises(ValueError, match=err_msg): _safe_indexing(array, indices, axis=1) else: subset = _safe_indexing(array, indices, axis=1) expected_output = [3, 6, 9] if expected_output_type == "sparse": # sparse matrix are keeping the 2D shape expected_output = [[3], [6], [9]] expected_array = _convert_container(expected_output, expected_output_type) assert_allclose_dense_sparse(subset, expected_array) @pytest.mark.parametrize("array_type", ["list", "array", "sparse"]) def test_safe_indexing_None_axis_0(array_type): X = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type) X_subset = _safe_indexing(X, None, axis=0) assert_allclose_dense_sparse(X_subset, X) def test_safe_indexing_pandas_no_matching_cols_error(): pd = pytest.importorskip("pandas") err_msg = "No valid specification of the columns." X = pd.DataFrame(X_toy) with pytest.raises(ValueError, match=err_msg): _safe_indexing(X, [1.0], axis=1) @pytest.mark.parametrize("axis", [None, 3]) def test_safe_indexing_error_axis(axis): with pytest.raises(ValueError, match="'axis' should be either 0"): _safe_indexing(X_toy, [0, 1], axis=axis) @pytest.mark.parametrize("X_constructor", ["array", "series"]) def test_safe_indexing_1d_array_error(X_constructor): # check that we are raising an error if the array-like passed is 1D and # we try to index on the 2nd dimension X = list(range(5)) if X_constructor == "array": X_constructor = np.asarray(X) elif X_constructor == "series": pd = pytest.importorskip("pandas") X_constructor = pd.Series(X) err_msg = "'X' should be a 2D NumPy array, 2D sparse matrix or pandas" with pytest.raises(ValueError, match=err_msg): _safe_indexing(X_constructor, [0, 1], axis=1) def test_safe_indexing_container_axis_0_unsupported_type(): indices = ["col_1", "col_2"] array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] err_msg = "String indexing is not supported with 'axis=0'" with pytest.raises(ValueError, match=err_msg): _safe_indexing(array, indices, axis=0) def test_safe_indexing_pandas_no_settingwithcopy_warning(): # Using safe_indexing with an array-like indexer gives a copy of the # DataFrame -> ensure it doesn't raise a warning if modified pd = pytest.importorskip("pandas") if parse_version(pd.__version__) < parse_version("0.25.0"): raise SkipTest( "Older pandas version still raise a SettingWithCopyWarning warning" ) X = pd.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}) subset = _safe_indexing(X, [0, 1], axis=0) with pytest.warns(None) as record: subset.iloc[0, 0] = 10 assert len(record) == 0, f"{[str(rec.message) for rec in record]}" # The original dataframe is unaffected by the assignment on the subset: assert X.iloc[0, 0] == 1 @pytest.mark.parametrize( "key, err_msg", [ (10, r"all features must be in \[0, 2\]"), ("whatever", "A given column is not a column of the dataframe"), ], ) def test_get_column_indices_error(key, err_msg): pd = pytest.importorskip("pandas") X_df = pd.DataFrame(X_toy, columns=["col_0", "col_1", "col_2"]) with pytest.raises(ValueError, match=err_msg): _get_column_indices(X_df, key) @pytest.mark.parametrize( "key", [["col1"], ["col2"], ["col1", "col2"], ["col1", "col3"], ["col2", "col3"]] ) def test_get_column_indices_pandas_nonunique_columns_error(key): pd = pytest.importorskip("pandas") toy = np.zeros((1, 5), dtype=int) columns = ["col1", "col1", "col2", "col3", "col2"] X = pd.DataFrame(toy, columns=columns) err_msg = "Selected columns, {}, are not unique in dataframe".format(key) with pytest.raises(ValueError) as exc_info: _get_column_indices(X, key) assert str(exc_info.value) == err_msg def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert set(to_tuple(A)) == S def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ["a", "b", "c"] b = np.array(["a", "b", "c"], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([["a", 0], ["b", 1], ["c", 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert a_s == ["c", "b", "a"] assert type(a_s) == list assert_array_equal(b_s, ["c", "b", "a"]) assert b_s.dtype == object assert c_s == [3, 2, 1] assert type(c_s) == list assert_array_equal(d_s, np.array([["c", 2], ["b", 1], ["a", 0]], dtype=object)) assert type(d_s) == MockDataFrame assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) with pytest.raises(ValueError, match="gen_even_slices got n_packs=-1, must be >=1"): next(slices) @pytest.mark.parametrize( ("row_bytes", "max_n_rows", "working_memory", "expected", "warn_msg"), [ (1024, None, 1, 1024, None), (1024, None, 0.99999999, 1023, None), (1023, None, 1, 1025, None), (1025, None, 1, 1023, None), (1024, None, 2, 2048, None), (1024, 7, 1, 7, None), (1024 * 1024, None, 1, 1, None), ( 1024 * 1024 + 1, None, 1, 1, "Could not adhere to working_memory config. Currently 1MiB, 2MiB required.", ), ], ) def test_get_chunk_n_rows(row_bytes, max_n_rows, working_memory, expected, warn_msg): warning = None if warn_msg is None else UserWarning with pytest.warns(warning, match=warn_msg) as w: actual = get_chunk_n_rows( row_bytes=row_bytes, max_n_rows=max_n_rows, working_memory=working_memory, ) assert actual == expected assert type(actual) is type(expected) if warn_msg is None: assert len(w) == 0 with config_context(working_memory=working_memory): with pytest.warns(warning, match=warn_msg) as w: actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows) assert actual == expected assert type(actual) is type(expected) if warn_msg is None: assert len(w) == 0 @pytest.mark.parametrize( ["source", "message", "is_long"], [ ("ABC", string.ascii_lowercase, False), ("ABCDEF", string.ascii_lowercase, False), ("ABC", string.ascii_lowercase * 3, True), ("ABC" * 10, string.ascii_lowercase, True), ("ABC", string.ascii_lowercase + "\u1048", False), ], ) @pytest.mark.parametrize( ["time", "time_str"], [ (0.2, " 0.2s"), (20, " 20.0s"), (2000, "33.3min"), (20000, "333.3min"), ], ) def test_message_with_time(source, message, is_long, time, time_str): out = _message_with_time(source, message, time) if is_long: assert len(out) > 70 else: assert len(out) == 70 assert out.startswith("[" + source + "] ") out = out[len(source) + 3 :] assert out.endswith(time_str) out = out[: -len(time_str)] assert out.endswith(", total=") out = out[: -len(", total=")] assert out.endswith(message) out = out[: -len(message)] assert out.endswith(" ") out = out[:-1] if is_long: assert not out else: assert list(set(out)) == ["."] @pytest.mark.parametrize( ["message", "expected"], [ ("hello", _message_with_time("ABC", "hello", 0.1) + "\n"), ("", _message_with_time("ABC", "", 0.1) + "\n"), (None, ""), ], ) def test_print_elapsed_time(message, expected, capsys, monkeypatch): monkeypatch.setattr(timeit, "default_timer", lambda: 0) with _print_elapsed_time("ABC", message): monkeypatch.setattr(timeit, "default_timer", lambda: 0.1) assert capsys.readouterr().out == expected @pytest.mark.parametrize( "value, result", [ (float("nan"), True), (np.nan, True), (float(np.nan), True), (np.float32(np.nan), True), (np.float64(np.nan), True), (0, False), (0.0, False), (None, False), ("", False), ("nan", False), ([np.nan], False), (9867966753463435747313673, False), # Python int that overflows with C type ], ) def test_is_scalar_nan(value, result): assert is_scalar_nan(value) is result # make sure that we are returning a Python bool assert isinstance(is_scalar_nan(value), bool) def test_approximate_mode(): """Make sure sklearn.utils._approximate_mode returns valid results for cases where "class_counts * n_draws" is enough to overflow 32-bit signed integer. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20774 """ X = np.array([99000, 1000], dtype=np.int32) ret = _approximate_mode(class_counts=X, n_draws=25000, rng=0) # Draws 25% of the total population, so in this case a fair draw means: # 25% * 99.000 = 24.750 # 25% * 1.000 = 250 assert_array_equal(ret, [24750, 250]) def dummy_func(): pass def test_deprecation_joblib_api(tmpdir): # Only parallel_backend and register_parallel_backend are not deprecated in # sklearn.utils from sklearn.utils import parallel_backend, register_parallel_backend assert_no_warnings(parallel_backend, "loky", None) assert_no_warnings(register_parallel_backend, "failing", None) from sklearn.utils._joblib import joblib del joblib.parallel.BACKENDS["failing"] @pytest.mark.parametrize("sequence", [[np.array(1), np.array(2)], [[1, 2], [3, 4]]]) def test_to_object_array(sequence): out = _to_object_array(sequence) assert isinstance(out, np.ndarray) assert out.dtype.kind == "O" assert out.ndim == 1