import numpy as np from numpy.testing import assert_allclose import pytest from scipy.fft._fftlog import fht, ifht, fhtoffset from scipy.special import poch def test_fht_agrees_with_fftlog(): # check that fht numerically agrees with the output from Fortran FFTLog, # the results were generated with the provided `fftlogtest` program, # after fixing how the k array is generated (divide range by n-1, not n) # test function, analytical Hankel transform is of the same form def f(r, mu): return r**(mu+1)*np.exp(-r**2/2) r = np.logspace(-4, 4, 16) dln = np.log(r[1]/r[0]) mu = 0.3 offset = 0.0 bias = 0.0 a = f(r, mu) # test 1: compute as given ours = fht(a, dln, mu, offset=offset, bias=bias) theirs = [ -0.1159922613593045E-02, 0.1625822618458832E-02, -0.1949518286432330E-02, 0.3789220182554077E-02, 0.5093959119952945E-03, 0.2785387803618774E-01, 0.9944952700848897E-01, 0.4599202164586588 , 0.3157462160881342 , -0.8201236844404755E-03, -0.7834031308271878E-03, 0.3931444945110708E-03, -0.2697710625194777E-03, 0.3568398050238820E-03, -0.5554454827797206E-03, 0.8286331026468585E-03 ] assert_allclose(ours, theirs) # test 2: change to optimal offset offset = fhtoffset(dln, mu, bias=bias) ours = fht(a, dln, mu, offset=offset, bias=bias) theirs = [ 0.4353768523152057E-04, -0.9197045663594285E-05, 0.3150140927838524E-03, 0.9149121960963704E-03, 0.5808089753959363E-02, 0.2548065256377240E-01, 0.1339477692089897 , 0.4821530509479356 , 0.2659899781579785 , -0.1116475278448113E-01, 0.1791441617592385E-02, -0.4181810476548056E-03, 0.1314963536765343E-03, -0.5422057743066297E-04, 0.3208681804170443E-04, -0.2696849476008234E-04 ] assert_allclose(ours, theirs) # test 3: positive bias bias = 0.8 offset = fhtoffset(dln, mu, bias=bias) ours = fht(a, dln, mu, offset=offset, bias=bias) theirs = [ -7.343667355831685 , 0.1710271207817100 , 0.1065374386206564 , -0.5121739602708132E-01, 0.2636649319269470E-01, 0.1697209218849693E-01, 0.1250215614723183 , 0.4739583261486729 , 0.2841149874912028 , -0.8312764741645729E-02, 0.1024233505508988E-02, -0.1644902767389120E-03, 0.3305775476926270E-04, -0.7786993194882709E-05, 0.1962258449520547E-05, -0.8977895734909250E-06 ] assert_allclose(ours, theirs) # test 4: negative bias bias = -0.8 offset = fhtoffset(dln, mu, bias=bias) ours = fht(a, dln, mu, offset=offset, bias=bias) theirs = [ 0.8985777068568745E-05, 0.4074898209936099E-04, 0.2123969254700955E-03, 0.1009558244834628E-02, 0.5131386375222176E-02, 0.2461678673516286E-01, 0.1235812845384476 , 0.4719570096404403 , 0.2893487490631317 , -0.1686570611318716E-01, 0.2231398155172505E-01, -0.1480742256379873E-01, 0.1692387813500801 , 0.3097490354365797 , 2.759360718240186 , 10.52510750700458 ] assert_allclose(ours, theirs) @pytest.mark.parametrize('optimal', [True, False]) @pytest.mark.parametrize('offset', [0.0, 1.0, -1.0]) @pytest.mark.parametrize('bias', [0, 0.1, -0.1]) @pytest.mark.parametrize('n', [64, 63]) def test_fht_identity(n, bias, offset, optimal): rng = np.random.RandomState(3491349965) a = rng.standard_normal(n) dln = rng.uniform(-1, 1) mu = rng.uniform(-2, 2) if optimal: offset = fhtoffset(dln, mu, initial=offset, bias=bias) A = fht(a, dln, mu, offset=offset, bias=bias) a_ = ifht(A, dln, mu, offset=offset, bias=bias) assert_allclose(a, a_) def test_fht_special_cases(): rng = np.random.RandomState(3491349965) a = rng.standard_normal(64) dln = rng.uniform(-1, 1) # let xp = (mu+1+q)/2, xm = (mu+1-q)/2, M = {0, -1, -2, ...} # case 1: xp in M, xm in M => well-defined transform mu, bias = -4.0, 1.0 with pytest.warns(None) as record: fht(a, dln, mu, bias=bias) assert not record, 'fht warned about a well-defined transform' # case 2: xp not in M, xm in M => well-defined transform mu, bias = -2.5, 0.5 with pytest.warns(None) as record: fht(a, dln, mu, bias=bias) assert not record, 'fht warned about a well-defined transform' # case 3: xp in M, xm not in M => singular transform mu, bias = -3.5, 0.5 with pytest.warns(Warning) as record: fht(a, dln, mu, bias=bias) assert record, 'fht did not warn about a singular transform' # case 4: xp not in M, xm in M => singular inverse transform mu, bias = -2.5, 0.5 with pytest.warns(Warning) as record: ifht(a, dln, mu, bias=bias) assert record, 'ifht did not warn about a singular transform' @pytest.mark.parametrize('n', [64, 63]) def test_fht_exact(n): rng = np.random.RandomState(3491349965) # for a(r) a power law r^\gamma, the fast Hankel transform produces the # exact continuous Hankel transform if biased with q = \gamma mu = rng.uniform(0, 3) # convergence of HT: -1-mu < gamma < 1/2 gamma = rng.uniform(-1-mu, 1/2) r = np.logspace(-2, 2, n) a = r**gamma dln = np.log(r[1]/r[0]) offset = fhtoffset(dln, mu, initial=0.0, bias=gamma) A = fht(a, dln, mu, offset=offset, bias=gamma) k = np.exp(offset)/r[::-1] # analytical result At = (2/k)**gamma * poch((mu+1-gamma)/2, gamma) assert_allclose(A, At)