import itertools import sys import platform import pytest import numpy as np from numpy.testing import assert_allclose from scipy.integrate import ode IS_MACOS_ARM64 = sys.platform == 'darwin' and platform.machine() == 'arm64' def _band_count(a): """Returns ml and mu, the lower and upper band sizes of a.""" nrows, ncols = a.shape ml = 0 for k in range(-nrows+1, 0): if np.diag(a, k).any(): ml = -k break mu = 0 for k in range(nrows-1, 0, -1): if np.diag(a, k).any(): mu = k break return ml, mu def _linear_func(t, y, a): """Linear system dy/dt = a * y""" return a.dot(y) def _linear_jac(t, y, a): """Jacobian of a * y is a.""" return a def _linear_banded_jac(t, y, a): """Banded Jacobian.""" ml, mu = _band_count(a) bjac = [np.r_[[0] * k, np.diag(a, k)] for k in range(mu, 0, -1)] bjac.append(np.diag(a)) for k in range(-1, -ml-1, -1): bjac.append(np.r_[np.diag(a, k), [0] * (-k)]) return bjac def _solve_linear_sys(a, y0, tend=1, dt=0.1, solver=None, method='bdf', use_jac=True, with_jacobian=False, banded=False): """Use scipy.integrate.ode to solve a linear system of ODEs. a : square ndarray Matrix of the linear system to be solved. y0 : ndarray Initial condition tend : float Stop time. dt : float Step size of the output. solver : str If not None, this must be "vode", "lsoda" or "zvode". method : str Either "bdf" or "adams". use_jac : bool Determines if the jacobian function is passed to ode(). with_jacobian : bool Passed to ode.set_integrator(). banded : bool Determines whether a banded or full jacobian is used. If `banded` is True, `lband` and `uband` are determined by the values in `a`. """ if banded: lband, uband = _band_count(a) else: lband = None uband = None if use_jac: if banded: r = ode(_linear_func, _linear_banded_jac) else: r = ode(_linear_func, _linear_jac) else: r = ode(_linear_func) if solver is None: if np.iscomplexobj(a): solver = "zvode" else: solver = "vode" r.set_integrator(solver, with_jacobian=with_jacobian, method=method, lband=lband, uband=uband, rtol=1e-9, atol=1e-10, ) t0 = 0 r.set_initial_value(y0, t0) r.set_f_params(a) r.set_jac_params(a) t = [t0] y = [y0] while r.successful() and r.t < tend: r.integrate(r.t + dt) t.append(r.t) y.append(r.y) t = np.array(t) y = np.array(y) return t, y def _analytical_solution(a, y0, t): """ Analytical solution to the linear differential equations dy/dt = a*y. The solution is only valid if `a` is diagonalizable. Returns a 2-D array with shape (len(t), len(y0)). """ lam, v = np.linalg.eig(a) c = np.linalg.solve(v, y0) e = c * np.exp(lam * t.reshape(-1, 1)) sol = e.dot(v.T) return sol @pytest.mark.skipif(IS_MACOS_ARM64, reason='failing on arm64') def test_banded_ode_solvers(): # Test the "lsoda", "vode" and "zvode" solvers of the `ode` class # with a system that has a banded Jacobian matrix. t_exact = np.linspace(0, 1.0, 5) # --- Real arrays for testing the "lsoda" and "vode" solvers --- # lband = 2, uband = 1: a_real = np.array([[-0.6, 0.1, 0.0, 0.0, 0.0], [0.2, -0.5, 0.9, 0.0, 0.0], [0.1, 0.1, -0.4, 0.1, 0.0], [0.0, 0.3, -0.1, -0.9, -0.3], [0.0, 0.0, 0.1, 0.1, -0.7]]) # lband = 0, uband = 1: a_real_upper = np.triu(a_real) # lband = 2, uband = 0: a_real_lower = np.tril(a_real) # lband = 0, uband = 0: a_real_diag = np.triu(a_real_lower) real_matrices = [a_real, a_real_upper, a_real_lower, a_real_diag] real_solutions = [] for a in real_matrices: y0 = np.arange(1, a.shape[0] + 1) y_exact = _analytical_solution(a, y0, t_exact) real_solutions.append((y0, t_exact, y_exact)) def check_real(idx, solver, meth, use_jac, with_jac, banded): a = real_matrices[idx] y0, t_exact, y_exact = real_solutions[idx] t, y = _solve_linear_sys(a, y0, tend=t_exact[-1], dt=t_exact[1] - t_exact[0], solver=solver, method=meth, use_jac=use_jac, with_jacobian=with_jac, banded=banded) assert_allclose(t, t_exact) assert_allclose(y, y_exact) for idx in range(len(real_matrices)): p = [['vode', 'lsoda'], # solver ['bdf', 'adams'], # method [False, True], # use_jac [False, True], # with_jacobian [False, True]] # banded for solver, meth, use_jac, with_jac, banded in itertools.product(*p): check_real(idx, solver, meth, use_jac, with_jac, banded) # --- Complex arrays for testing the "zvode" solver --- # complex, lband = 2, uband = 1: a_complex = a_real - 0.5j * a_real # complex, lband = 0, uband = 0: a_complex_diag = np.diag(np.diag(a_complex)) complex_matrices = [a_complex, a_complex_diag] complex_solutions = [] for a in complex_matrices: y0 = np.arange(1, a.shape[0] + 1) + 1j y_exact = _analytical_solution(a, y0, t_exact) complex_solutions.append((y0, t_exact, y_exact)) def check_complex(idx, solver, meth, use_jac, with_jac, banded): a = complex_matrices[idx] y0, t_exact, y_exact = complex_solutions[idx] t, y = _solve_linear_sys(a, y0, tend=t_exact[-1], dt=t_exact[1] - t_exact[0], solver=solver, method=meth, use_jac=use_jac, with_jacobian=with_jac, banded=banded) assert_allclose(t, t_exact) assert_allclose(y, y_exact) for idx in range(len(complex_matrices)): p = [['bdf', 'adams'], # method [False, True], # use_jac [False, True], # with_jacobian [False, True]] # banded for meth, use_jac, with_jac, banded in itertools.product(*p): check_complex(idx, "zvode", meth, use_jac, with_jac, banded)