import warnings import io import numpy as np from numpy.testing import ( assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, assert_equal, assert_) from pytest import raises as assert_raises from scipy.interpolate import ( KroghInterpolator, krogh_interpolate, BarycentricInterpolator, barycentric_interpolate, approximate_taylor_polynomial, CubicHermiteSpline, pchip, PchipInterpolator, pchip_interpolate, Akima1DInterpolator, CubicSpline, make_interp_spline) def check_shape(interpolator_cls, x_shape, y_shape, deriv_shape=None, axis=0, extra_args={}): np.random.seed(1234) x = [-1, 0, 1, 2, 3, 4] s = list(range(1, len(y_shape)+1)) s.insert(axis % (len(y_shape)+1), 0) y = np.random.rand(*((6,) + y_shape)).transpose(s) # Cython code chokes on y.shape = (0, 3) etc., skip them if y.size == 0: return xi = np.zeros(x_shape) if interpolator_cls is CubicHermiteSpline: dydx = np.random.rand(*((6,) + y_shape)).transpose(s) yi = interpolator_cls(x, y, dydx, axis=axis, **extra_args)(xi) else: yi = interpolator_cls(x, y, axis=axis, **extra_args)(xi) target_shape = ((deriv_shape or ()) + y.shape[:axis] + x_shape + y.shape[axis:][1:]) assert_equal(yi.shape, target_shape) # check it works also with lists if x_shape and y.size > 0: if interpolator_cls is CubicHermiteSpline: interpolator_cls(list(x), list(y), list(dydx), axis=axis, **extra_args)(list(xi)) else: interpolator_cls(list(x), list(y), axis=axis, **extra_args)(list(xi)) # check also values if xi.size > 0 and deriv_shape is None: bs_shape = y.shape[:axis] + (1,)*len(x_shape) + y.shape[axis:][1:] yv = y[((slice(None,),)*(axis % y.ndim)) + (1,)] yv = yv.reshape(bs_shape) yi, y = np.broadcast_arrays(yi, yv) assert_allclose(yi, y) SHAPES = [(), (0,), (1,), (6, 2, 5)] def test_shapes(): def spl_interp(x, y, axis): return make_interp_spline(x, y, axis=axis) for ip in [KroghInterpolator, BarycentricInterpolator, CubicHermiteSpline, pchip, Akima1DInterpolator, CubicSpline, spl_interp]: for s1 in SHAPES: for s2 in SHAPES: for axis in range(-len(s2), len(s2)): if ip != CubicSpline: check_shape(ip, s1, s2, None, axis) else: for bc in ['natural', 'clamped']: extra = {'bc_type': bc} check_shape(ip, s1, s2, None, axis, extra) def test_derivs_shapes(): def krogh_derivs(x, y, axis=0): return KroghInterpolator(x, y, axis).derivatives for s1 in SHAPES: for s2 in SHAPES: for axis in range(-len(s2), len(s2)): check_shape(krogh_derivs, s1, s2, (6,), axis) def test_deriv_shapes(): def krogh_deriv(x, y, axis=0): return KroghInterpolator(x, y, axis).derivative def pchip_deriv(x, y, axis=0): return pchip(x, y, axis).derivative() def pchip_deriv2(x, y, axis=0): return pchip(x, y, axis).derivative(2) def pchip_antideriv(x, y, axis=0): return pchip(x, y, axis).derivative() def pchip_antideriv2(x, y, axis=0): return pchip(x, y, axis).derivative(2) def pchip_deriv_inplace(x, y, axis=0): class P(PchipInterpolator): def __call__(self, x): return PchipInterpolator.__call__(self, x, 1) pass return P(x, y, axis) def akima_deriv(x, y, axis=0): return Akima1DInterpolator(x, y, axis).derivative() def akima_antideriv(x, y, axis=0): return Akima1DInterpolator(x, y, axis).antiderivative() def cspline_deriv(x, y, axis=0): return CubicSpline(x, y, axis).derivative() def cspline_antideriv(x, y, axis=0): return CubicSpline(x, y, axis).antiderivative() def bspl_deriv(x, y, axis=0): return make_interp_spline(x, y, axis=axis).derivative() def bspl_antideriv(x, y, axis=0): return make_interp_spline(x, y, axis=axis).antiderivative() for ip in [krogh_deriv, pchip_deriv, pchip_deriv2, pchip_deriv_inplace, pchip_antideriv, pchip_antideriv2, akima_deriv, akima_antideriv, cspline_deriv, cspline_antideriv, bspl_deriv, bspl_antideriv]: for s1 in SHAPES: for s2 in SHAPES: for axis in range(-len(s2), len(s2)): check_shape(ip, s1, s2, (), axis) def test_complex(): x = [1, 2, 3, 4] y = [1, 2, 1j, 3] for ip in [KroghInterpolator, BarycentricInterpolator, pchip, CubicSpline]: p = ip(x, y) assert_allclose(y, p(x)) dydx = [0, -1j, 2, 3j] p = CubicHermiteSpline(x, y, dydx) assert_allclose(y, p(x)) assert_allclose(dydx, p(x, 1)) class TestKrogh: def setup_method(self): self.true_poly = np.poly1d([-2,3,1,5,-4]) self.test_xs = np.linspace(-1,1,100) self.xs = np.linspace(-1,1,5) self.ys = self.true_poly(self.xs) def test_lagrange(self): P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_scalar(self): P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(7),P(7)) assert_almost_equal(self.true_poly(np.array(7)), P(np.array(7))) def test_derivatives(self): P = KroghInterpolator(self.xs,self.ys) D = P.derivatives(self.test_xs) for i in range(D.shape[0]): assert_almost_equal(self.true_poly.deriv(i)(self.test_xs), D[i]) def test_low_derivatives(self): P = KroghInterpolator(self.xs,self.ys) D = P.derivatives(self.test_xs,len(self.xs)+2) for i in range(D.shape[0]): assert_almost_equal(self.true_poly.deriv(i)(self.test_xs), D[i]) def test_derivative(self): P = KroghInterpolator(self.xs,self.ys) m = 10 r = P.derivatives(self.test_xs,m) for i in range(m): assert_almost_equal(P.derivative(self.test_xs,i),r[i]) def test_high_derivative(self): P = KroghInterpolator(self.xs,self.ys) for i in range(len(self.xs), 2*len(self.xs)): assert_almost_equal(P.derivative(self.test_xs,i), np.zeros(len(self.test_xs))) def test_hermite(self): P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_vector(self): xs = [0, 1, 2] ys = np.array([[0,1],[1,0],[2,1]]) P = KroghInterpolator(xs,ys) Pi = [KroghInterpolator(xs,ys[:,i]) for i in range(ys.shape[1])] test_xs = np.linspace(-1,3,100) assert_almost_equal(P(test_xs), np.rollaxis(np.asarray([p(test_xs) for p in Pi]),-1)) assert_almost_equal(P.derivatives(test_xs), np.transpose(np.asarray([p.derivatives(test_xs) for p in Pi]), (1,2,0))) def test_empty(self): P = KroghInterpolator(self.xs,self.ys) assert_array_equal(P([]), []) def test_shapes_scalarvalue(self): P = KroghInterpolator(self.xs,self.ys) assert_array_equal(np.shape(P(0)), ()) assert_array_equal(np.shape(P(np.array(0))), ()) assert_array_equal(np.shape(P([0])), (1,)) assert_array_equal(np.shape(P([0,1])), (2,)) def test_shapes_scalarvalue_derivative(self): P = KroghInterpolator(self.xs,self.ys) n = P.n assert_array_equal(np.shape(P.derivatives(0)), (n,)) assert_array_equal(np.shape(P.derivatives(np.array(0))), (n,)) assert_array_equal(np.shape(P.derivatives([0])), (n,1)) assert_array_equal(np.shape(P.derivatives([0,1])), (n,2)) def test_shapes_vectorvalue(self): P = KroghInterpolator(self.xs,np.outer(self.ys,np.arange(3))) assert_array_equal(np.shape(P(0)), (3,)) assert_array_equal(np.shape(P([0])), (1,3)) assert_array_equal(np.shape(P([0,1])), (2,3)) def test_shapes_1d_vectorvalue(self): P = KroghInterpolator(self.xs,np.outer(self.ys,[1])) assert_array_equal(np.shape(P(0)), (1,)) assert_array_equal(np.shape(P([0])), (1,1)) assert_array_equal(np.shape(P([0,1])), (2,1)) def test_shapes_vectorvalue_derivative(self): P = KroghInterpolator(self.xs,np.outer(self.ys,np.arange(3))) n = P.n assert_array_equal(np.shape(P.derivatives(0)), (n,3)) assert_array_equal(np.shape(P.derivatives([0])), (n,1,3)) assert_array_equal(np.shape(P.derivatives([0,1])), (n,2,3)) def test_wrapper(self): P = KroghInterpolator(self.xs, self.ys) ki = krogh_interpolate assert_almost_equal(P(self.test_xs), ki(self.xs, self.ys, self.test_xs)) assert_almost_equal(P.derivative(self.test_xs, 2), ki(self.xs, self.ys, self.test_xs, der=2)) assert_almost_equal(P.derivatives(self.test_xs, 2), ki(self.xs, self.ys, self.test_xs, der=[0, 1])) def test_int_inputs(self): # Check input args are cast correctly to floats, gh-3669 x = [0, 234, 468, 702, 936, 1170, 1404, 2340, 3744, 6084, 8424, 13104, 60000] offset_cdf = np.array([-0.95, -0.86114777, -0.8147762, -0.64072425, -0.48002351, -0.34925329, -0.26503107, -0.13148093, -0.12988833, -0.12979296, -0.12973574, -0.08582937, 0.05]) f = KroghInterpolator(x, offset_cdf) assert_allclose(abs((f(x) - offset_cdf) / f.derivative(x, 1)), 0, atol=1e-10) def test_derivatives_complex(self): # regression test for gh-7381: krogh.derivatives(0) fails complex y x, y = np.array([-1, -1, 0, 1, 1]), np.array([1, 1.0j, 0, -1, 1.0j]) func = KroghInterpolator(x, y) cmplx = func.derivatives(0) cmplx2 = (KroghInterpolator(x, y.real).derivatives(0) + 1j*KroghInterpolator(x, y.imag).derivatives(0)) assert_allclose(cmplx, cmplx2, atol=1e-15) class TestTaylor: def test_exponential(self): degree = 5 p = approximate_taylor_polynomial(np.exp, 0, degree, 1, 15) for i in range(degree+1): assert_almost_equal(p(0),1) p = p.deriv() assert_almost_equal(p(0),0) class TestBarycentric: def setup_method(self): self.true_poly = np.poly1d([-2, 3, 1, 5, -4]) self.test_xs = np.linspace(-1, 1, 100) self.xs = np.linspace(-1, 1, 5) self.ys = self.true_poly(self.xs) def test_lagrange(self): P = BarycentricInterpolator(self.xs, self.ys) assert_almost_equal(self.true_poly(self.test_xs), P(self.test_xs)) def test_scalar(self): P = BarycentricInterpolator(self.xs, self.ys) assert_almost_equal(self.true_poly(7), P(7)) assert_almost_equal(self.true_poly(np.array(7)), P(np.array(7))) def test_delayed(self): P = BarycentricInterpolator(self.xs) P.set_yi(self.ys) assert_almost_equal(self.true_poly(self.test_xs), P(self.test_xs)) def test_append(self): P = BarycentricInterpolator(self.xs[:3], self.ys[:3]) P.add_xi(self.xs[3:], self.ys[3:]) assert_almost_equal(self.true_poly(self.test_xs), P(self.test_xs)) def test_vector(self): xs = [0, 1, 2] ys = np.array([[0, 1], [1, 0], [2, 1]]) BI = BarycentricInterpolator P = BI(xs, ys) Pi = [BI(xs, ys[:, i]) for i in range(ys.shape[1])] test_xs = np.linspace(-1, 3, 100) assert_almost_equal(P(test_xs), np.rollaxis(np.asarray([p(test_xs) for p in Pi]), -1)) def test_shapes_scalarvalue(self): P = BarycentricInterpolator(self.xs, self.ys) assert_array_equal(np.shape(P(0)), ()) assert_array_equal(np.shape(P(np.array(0))), ()) assert_array_equal(np.shape(P([0])), (1,)) assert_array_equal(np.shape(P([0, 1])), (2,)) def test_shapes_vectorvalue(self): P = BarycentricInterpolator(self.xs, np.outer(self.ys, np.arange(3))) assert_array_equal(np.shape(P(0)), (3,)) assert_array_equal(np.shape(P([0])), (1, 3)) assert_array_equal(np.shape(P([0, 1])), (2, 3)) def test_shapes_1d_vectorvalue(self): P = BarycentricInterpolator(self.xs, np.outer(self.ys, [1])) assert_array_equal(np.shape(P(0)), (1,)) assert_array_equal(np.shape(P([0])), (1, 1)) assert_array_equal(np.shape(P([0,1])), (2, 1)) def test_wrapper(self): P = BarycentricInterpolator(self.xs, self.ys) values = barycentric_interpolate(self.xs, self.ys, self.test_xs) assert_almost_equal(P(self.test_xs), values) def test_int_input(self): x = 1000 * np.arange(1, 11) # np.prod(x[-1] - x[:-1]) overflows y = np.arange(1, 11) value = barycentric_interpolate(x, y, 1000 * 9.5) assert_almost_equal(value, 9.5) class TestPCHIP: def _make_random(self, npts=20): np.random.seed(1234) xi = np.sort(np.random.random(npts)) yi = np.random.random(npts) return pchip(xi, yi), xi, yi def test_overshoot(self): # PCHIP should not overshoot p, xi, yi = self._make_random() for i in range(len(xi)-1): x1, x2 = xi[i], xi[i+1] y1, y2 = yi[i], yi[i+1] if y1 > y2: y1, y2 = y2, y1 xp = np.linspace(x1, x2, 10) yp = p(xp) assert_(((y1 <= yp + 1e-15) & (yp <= y2 + 1e-15)).all()) def test_monotone(self): # PCHIP should preserve monotonicty p, xi, yi = self._make_random() for i in range(len(xi)-1): x1, x2 = xi[i], xi[i+1] y1, y2 = yi[i], yi[i+1] xp = np.linspace(x1, x2, 10) yp = p(xp) assert_(((y2-y1) * (yp[1:] - yp[:1]) > 0).all()) def test_cast(self): # regression test for integer input data, see gh-3453 data = np.array([[0, 4, 12, 27, 47, 60, 79, 87, 99, 100], [-33, -33, -19, -2, 12, 26, 38, 45, 53, 55]]) xx = np.arange(100) curve = pchip(data[0], data[1])(xx) data1 = data * 1.0 curve1 = pchip(data1[0], data1[1])(xx) assert_allclose(curve, curve1, atol=1e-14, rtol=1e-14) def test_nag(self): # Example from NAG C implementation, # http://nag.com/numeric/cl/nagdoc_cl25/html/e01/e01bec.html # suggested in gh-5326 as a smoke test for the way the derivatives # are computed (see also gh-3453) dataStr = ''' 7.99 0.00000E+0 8.09 0.27643E-4 8.19 0.43750E-1 8.70 0.16918E+0 9.20 0.46943E+0 10.00 0.94374E+0 12.00 0.99864E+0 15.00 0.99992E+0 20.00 0.99999E+0 ''' data = np.loadtxt(io.StringIO(dataStr)) pch = pchip(data[:,0], data[:,1]) resultStr = ''' 7.9900 0.0000 9.1910 0.4640 10.3920 0.9645 11.5930 0.9965 12.7940 0.9992 13.9950 0.9998 15.1960 0.9999 16.3970 1.0000 17.5980 1.0000 18.7990 1.0000 20.0000 1.0000 ''' result = np.loadtxt(io.StringIO(resultStr)) assert_allclose(result[:,1], pch(result[:,0]), rtol=0., atol=5e-5) def test_endslopes(self): # this is a smoke test for gh-3453: PCHIP interpolator should not # set edge slopes to zero if the data do not suggest zero edge derivatives x = np.array([0.0, 0.1, 0.25, 0.35]) y1 = np.array([279.35, 0.5e3, 1.0e3, 2.5e3]) y2 = np.array([279.35, 2.5e3, 1.50e3, 1.0e3]) for pp in (pchip(x, y1), pchip(x, y2)): for t in (x[0], x[-1]): assert_(pp(t, 1) != 0) def test_all_zeros(self): x = np.arange(10) y = np.zeros_like(x) # this should work and not generate any warnings with warnings.catch_warnings(): warnings.filterwarnings('error') pch = pchip(x, y) xx = np.linspace(0, 9, 101) assert_equal(pch(xx), 0.) def test_two_points(self): # regression test for gh-6222: pchip([0, 1], [0, 1]) fails because # it tries to use a three-point scheme to estimate edge derivatives, # while there are only two points available. # Instead, it should construct a linear interpolator. x = np.linspace(0, 1, 11) p = pchip([0, 1], [0, 2]) assert_allclose(p(x), 2*x, atol=1e-15) def test_pchip_interpolate(self): assert_array_almost_equal( pchip_interpolate([1,2,3], [4,5,6], [0.5], der=1), [1.]) assert_array_almost_equal( pchip_interpolate([1,2,3], [4,5,6], [0.5], der=0), [3.5]) assert_array_almost_equal( pchip_interpolate([1,2,3], [4,5,6], [0.5], der=[0, 1]), [[3.5], [1]]) def test_roots(self): # regression test for gh-6357: .roots method should work p = pchip([0, 1], [-1, 1]) r = p.roots() assert_allclose(r, 0.5) class TestCubicSpline: @staticmethod def check_correctness(S, bc_start='not-a-knot', bc_end='not-a-knot', tol=1e-14): """Check that spline coefficients satisfy the continuity and boundary conditions.""" x = S.x c = S.c dx = np.diff(x) dx = dx.reshape([dx.shape[0]] + [1] * (c.ndim - 2)) dxi = dx[:-1] # Check C2 continuity. assert_allclose(c[3, 1:], c[0, :-1] * dxi**3 + c[1, :-1] * dxi**2 + c[2, :-1] * dxi + c[3, :-1], rtol=tol, atol=tol) assert_allclose(c[2, 1:], 3 * c[0, :-1] * dxi**2 + 2 * c[1, :-1] * dxi + c[2, :-1], rtol=tol, atol=tol) assert_allclose(c[1, 1:], 3 * c[0, :-1] * dxi + c[1, :-1], rtol=tol, atol=tol) # Check that we found a parabola, the third derivative is 0. if x.size == 3 and bc_start == 'not-a-knot' and bc_end == 'not-a-knot': assert_allclose(c[0], 0, rtol=tol, atol=tol) return # Check periodic boundary conditions. if bc_start == 'periodic': assert_allclose(S(x[0], 0), S(x[-1], 0), rtol=tol, atol=tol) assert_allclose(S(x[0], 1), S(x[-1], 1), rtol=tol, atol=tol) assert_allclose(S(x[0], 2), S(x[-1], 2), rtol=tol, atol=tol) return # Check other boundary conditions. if bc_start == 'not-a-knot': if x.size == 2: slope = (S(x[1]) - S(x[0])) / dx[0] assert_allclose(S(x[0], 1), slope, rtol=tol, atol=tol) else: assert_allclose(c[0, 0], c[0, 1], rtol=tol, atol=tol) elif bc_start == 'clamped': assert_allclose(S(x[0], 1), 0, rtol=tol, atol=tol) elif bc_start == 'natural': assert_allclose(S(x[0], 2), 0, rtol=tol, atol=tol) else: order, value = bc_start assert_allclose(S(x[0], order), value, rtol=tol, atol=tol) if bc_end == 'not-a-knot': if x.size == 2: slope = (S(x[1]) - S(x[0])) / dx[0] assert_allclose(S(x[1], 1), slope, rtol=tol, atol=tol) else: assert_allclose(c[0, -1], c[0, -2], rtol=tol, atol=tol) elif bc_end == 'clamped': assert_allclose(S(x[-1], 1), 0, rtol=tol, atol=tol) elif bc_end == 'natural': assert_allclose(S(x[-1], 2), 0, rtol=2*tol, atol=2*tol) else: order, value = bc_end assert_allclose(S(x[-1], order), value, rtol=tol, atol=tol) def check_all_bc(self, x, y, axis): deriv_shape = list(y.shape) del deriv_shape[axis] first_deriv = np.empty(deriv_shape) first_deriv.fill(2) second_deriv = np.empty(deriv_shape) second_deriv.fill(-1) bc_all = [ 'not-a-knot', 'natural', 'clamped', (1, first_deriv), (2, second_deriv) ] for bc in bc_all[:3]: S = CubicSpline(x, y, axis=axis, bc_type=bc) self.check_correctness(S, bc, bc) for bc_start in bc_all: for bc_end in bc_all: S = CubicSpline(x, y, axis=axis, bc_type=(bc_start, bc_end)) self.check_correctness(S, bc_start, bc_end, tol=2e-14) def test_general(self): x = np.array([-1, 0, 0.5, 2, 4, 4.5, 5.5, 9]) y = np.array([0, -0.5, 2, 3, 2.5, 1, 1, 0.5]) for n in [2, 3, x.size]: self.check_all_bc(x[:n], y[:n], 0) Y = np.empty((2, n, 2)) Y[0, :, 0] = y[:n] Y[0, :, 1] = y[:n] - 1 Y[1, :, 0] = y[:n] + 2 Y[1, :, 1] = y[:n] + 3 self.check_all_bc(x[:n], Y, 1) def test_periodic(self): for n in [2, 3, 5]: x = np.linspace(0, 2 * np.pi, n) y = np.cos(x) S = CubicSpline(x, y, bc_type='periodic') self.check_correctness(S, 'periodic', 'periodic') Y = np.empty((2, n, 2)) Y[0, :, 0] = y Y[0, :, 1] = y + 2 Y[1, :, 0] = y - 1 Y[1, :, 1] = y + 5 S = CubicSpline(x, Y, axis=1, bc_type='periodic') self.check_correctness(S, 'periodic', 'periodic') def test_periodic_eval(self): x = np.linspace(0, 2 * np.pi, 10) y = np.cos(x) S = CubicSpline(x, y, bc_type='periodic') assert_almost_equal(S(1), S(1 + 2 * np.pi), decimal=15) def test_second_derivative_continuity_gh_11758(self): # gh-11758: C2 continuity fail x = np.array([0.9, 1.3, 1.9, 2.1, 2.6, 3.0, 3.9, 4.4, 4.7, 5.0, 6.0, 7.0, 8.0, 9.2, 10.5, 11.3, 11.6, 12.0, 12.6, 13.0, 13.3]) y = np.array([1.3, 1.5, 1.85, 2.1, 2.6, 2.7, 2.4, 2.15, 2.05, 2.1, 2.25, 2.3, 2.25, 1.95, 1.4, 0.9, 0.7, 0.6, 0.5, 0.4, 1.3]) S = CubicSpline(x, y, bc_type='periodic', extrapolate='periodic') self.check_correctness(S, 'periodic', 'periodic') def test_three_points(self): # gh-11758: Fails computing a_m2_m1 # In this case, s (first derivatives) could be found manually by solving # system of 2 linear equations. Due to solution of this system, # s[i] = (h1m2 + h2m1) / (h1 + h2), where h1 = x[1] - x[0], h2 = x[2] - x[1], # m1 = (y[1] - y[0]) / h1, m2 = (y[2] - y[1]) / h2 x = np.array([1.0, 2.75, 3.0]) y = np.array([1.0, 15.0, 1.0]) S = CubicSpline(x, y, bc_type='periodic') self.check_correctness(S, 'periodic', 'periodic') assert_allclose(S.derivative(1)(x), np.array([-48.0, -48.0, -48.0])) def test_dtypes(self): x = np.array([0, 1, 2, 3], dtype=int) y = np.array([-5, 2, 3, 1], dtype=int) S = CubicSpline(x, y) self.check_correctness(S) y = np.array([-1+1j, 0.0, 1-1j, 0.5-1.5j]) S = CubicSpline(x, y) self.check_correctness(S) S = CubicSpline(x, x ** 3, bc_type=("natural", (1, 2j))) self.check_correctness(S, "natural", (1, 2j)) y = np.array([-5, 2, 3, 1]) S = CubicSpline(x, y, bc_type=[(1, 2 + 0.5j), (2, 0.5 - 1j)]) self.check_correctness(S, (1, 2 + 0.5j), (2, 0.5 - 1j)) def test_small_dx(self): rng = np.random.RandomState(0) x = np.sort(rng.uniform(size=100)) y = 1e4 + rng.uniform(size=100) S = CubicSpline(x, y) self.check_correctness(S, tol=1e-13) def test_incorrect_inputs(self): x = np.array([1, 2, 3, 4]) y = np.array([1, 2, 3, 4]) xc = np.array([1 + 1j, 2, 3, 4]) xn = np.array([np.nan, 2, 3, 4]) xo = np.array([2, 1, 3, 4]) yn = np.array([np.nan, 2, 3, 4]) y3 = [1, 2, 3] x1 = [1] y1 = [1] assert_raises(ValueError, CubicSpline, xc, y) assert_raises(ValueError, CubicSpline, xn, y) assert_raises(ValueError, CubicSpline, x, yn) assert_raises(ValueError, CubicSpline, xo, y) assert_raises(ValueError, CubicSpline, x, y3) assert_raises(ValueError, CubicSpline, x[:, np.newaxis], y) assert_raises(ValueError, CubicSpline, x1, y1) wrong_bc = [('periodic', 'clamped'), ((2, 0), (3, 10)), ((1, 0), ), (0., 0.), 'not-a-typo'] for bc_type in wrong_bc: assert_raises(ValueError, CubicSpline, x, y, 0, bc_type, True) # Shapes mismatch when giving arbitrary derivative values: Y = np.c_[y, y] bc1 = ('clamped', (1, 0)) bc2 = ('clamped', (1, [0, 0, 0])) bc3 = ('clamped', (1, [[0, 0]])) assert_raises(ValueError, CubicSpline, x, Y, 0, bc1, True) assert_raises(ValueError, CubicSpline, x, Y, 0, bc2, True) assert_raises(ValueError, CubicSpline, x, Y, 0, bc3, True) # periodic condition, y[-1] must be equal to y[0]: assert_raises(ValueError, CubicSpline, x, y, 0, 'periodic', True) def test_CubicHermiteSpline_correctness(): x = [0, 2, 7] y = [-1, 2, 3] dydx = [0, 3, 7] s = CubicHermiteSpline(x, y, dydx) assert_allclose(s(x), y, rtol=1e-15) assert_allclose(s(x, 1), dydx, rtol=1e-15) def test_CubicHermiteSpline_error_handling(): x = [1, 2, 3] y = [0, 3, 5] dydx = [1, -1, 2, 3] assert_raises(ValueError, CubicHermiteSpline, x, y, dydx) dydx_with_nan = [1, 0, np.nan] assert_raises(ValueError, CubicHermiteSpline, x, y, dydx_with_nan) def test_roots_extrapolate_gh_11185(): x = np.array([0.001, 0.002]) y = np.array([1.66066935e-06, 1.10410807e-06]) dy = np.array([-1.60061854, -1.600619]) p = CubicHermiteSpline(x, y, dy) # roots(extrapolate=True) for a polynomial with a single interval # should return all three real roots r = p.roots(extrapolate=True) assert_equal(p.c.shape[1], 1) assert_equal(r.size, 3)