""" Sketching-based Matrix Computations """ # Author: Jordi Montes # August 28, 2017 import numpy as np from scipy._lib._util import check_random_state, rng_integers from scipy.sparse import csc_matrix __all__ = ['clarkson_woodruff_transform'] def cwt_matrix(n_rows, n_columns, seed=None): r""" Generate a matrix S which represents a Clarkson-Woodruff transform. Given the desired size of matrix, the method returns a matrix S of size (n_rows, n_columns) where each column has all the entries set to 0 except for one position which has been randomly set to +1 or -1 with equal probability. Parameters ---------- n_rows: int Number of rows of S n_columns: int Number of columns of S seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- S : (n_rows, n_columns) csc_matrix The returned matrix has ``n_columns`` nonzero entries. Notes ----- Given a matrix A, with probability at least 9/10, .. math:: \|SA\| = (1 \pm \epsilon)\|A\| Where the error epsilon is related to the size of S. """ rng = check_random_state(seed) rows = rng_integers(rng, 0, n_rows, n_columns) cols = np.arange(n_columns+1) signs = rng.choice([1, -1], n_columns) S = csc_matrix((signs, rows, cols),shape=(n_rows, n_columns)) return S def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None): r""" Applies a Clarkson-Woodruff Transform/sketch to the input matrix. Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of size (sketch_size, d) so that .. math:: \|Ax\| \approx \|A'x\| with high probability via the Clarkson-Woodruff Transform, otherwise known as the CountSketch matrix. Parameters ---------- input_matrix: array_like Input matrix, of shape ``(n, d)``. sketch_size: int Number of rows for the sketch. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- A' : array_like Sketch of the input matrix ``A``, of size ``(sketch_size, d)``. Notes ----- To make the statement .. math:: \|Ax\| \approx \|A'x\| precise, observe the following result which is adapted from the proof of Theorem 14 of [2]_ via Markov's Inequality. If we have a sketch size ``sketch_size=k`` which is at least .. math:: k \geq \frac{2}{\epsilon^2\delta} Then for any fixed vector ``x``, .. math:: \|Ax\| = (1\pm\epsilon)\|A'x\| with probability at least one minus delta. This implementation takes advantage of sparsity: computing a sketch takes time proportional to ``A.nnz``. Data ``A`` which is in ``scipy.sparse.csc_matrix`` format gives the quickest computation time for sparse input. >>> from scipy import linalg >>> from scipy import sparse >>> rng = np.random.default_rng() >>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200 >>> A = sparse.rand(n_rows, n_columns, density=density, format='csc') >>> B = sparse.rand(n_rows, n_columns, density=density, format='csr') >>> C = sparse.rand(n_rows, n_columns, density=density, format='coo') >>> D = rng.standard_normal((n_rows, n_columns)) >>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest >>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast >>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower >>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest That said, this method does perform well on dense inputs, just slower on a relative scale. Examples -------- Given a big dense matrix ``A``: >>> from scipy import linalg >>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200 >>> rng = np.random.default_rng() >>> A = rng.standard_normal((n_rows, n_columns)) >>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows) >>> sketch.shape (200, 100) >>> norm_A = np.linalg.norm(A) >>> norm_sketch = np.linalg.norm(sketch) Now with high probability, the true norm ``norm_A`` is close to the sketched norm ``norm_sketch`` in absolute value. Similarly, applying our sketch preserves the solution to a linear regression of :math:`\min \|Ax - b\|`. >>> from scipy import linalg >>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200 >>> rng = np.random.default_rng() >>> A = rng.standard_normal((n_rows, n_columns)) >>> b = rng.standard_normal(n_rows) >>> x = np.linalg.lstsq(A, b, rcond=None) >>> Ab = np.hstack((A, b.reshape(-1,1))) >>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows) >>> SA, Sb = SAb[:,:-1], SAb[:,-1] >>> x_sketched = np.linalg.lstsq(SA, Sb, rcond=None) As with the matrix norm example, ``np.linalg.norm(A @ x - b)`` is close to ``np.linalg.norm(A @ x_sketched - b)`` with high probability. References ---------- .. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity time. In STOC, 2013. .. [2] David P. Woodruff. Sketching as a tool for numerical linear algebra. In Foundations and Trends in Theoretical Computer Science, 2014. """ S = cwt_matrix(sketch_size, input_matrix.shape[0], seed) return S.dot(input_matrix)