# # Author: Pearu Peterson, March 2002 # # w/ additions by Travis Oliphant, March 2002 # and Jake Vanderplas, August 2012 from warnings import warn import numpy as np from numpy import atleast_1d, atleast_2d from .flinalg import get_flinalg_funcs from .lapack import get_lapack_funcs, _compute_lwork from .misc import LinAlgError, _datacopied, LinAlgWarning from .decomp import _asarray_validated from . import decomp, decomp_svd from ._solve_toeplitz import levinson __all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded', 'solve_toeplitz', 'solve_circulant', 'inv', 'det', 'lstsq', 'pinv', 'pinv2', 'pinvh', 'matrix_balance', 'matmul_toeplitz'] # Linear equations def _solve_check(n, info, lamch=None, rcond=None): """ Check arguments during the different steps of the solution phase """ if info < 0: raise ValueError('LAPACK reported an illegal value in {}-th argument' '.'.format(-info)) elif 0 < info: raise LinAlgError('Matrix is singular.') if lamch is None: return E = lamch('E') if rcond < E: warn('Ill-conditioned matrix (rcond={:.6g}): ' 'result may not be accurate.'.format(rcond), LinAlgWarning, stacklevel=3) def solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, debug=None, check_finite=True, assume_a='gen', transposed=False): """ Solves the linear equation set ``a * x = b`` for the unknown ``x`` for square ``a`` matrix. If the data matrix is known to be a particular type then supplying the corresponding string to ``assume_a`` key chooses the dedicated solver. The available options are =================== ======== generic matrix 'gen' symmetric 'sym' hermitian 'her' positive definite 'pos' =================== ======== If omitted, ``'gen'`` is the default structure. The datatype of the arrays define which solver is called regardless of the values. In other words, even when the complex array entries have precisely zero imaginary parts, the complex solver will be called based on the data type of the array. Parameters ---------- a : (N, N) array_like Square input data b : (N, NRHS) array_like Input data for the right hand side. sym_pos : bool, optional Assume `a` is symmetric and positive definite. This key is deprecated and assume_a = 'pos' keyword is recommended instead. The functionality is the same. It will be removed in the future. lower : bool, optional If True, only the data contained in the lower triangle of `a`. Default is to use upper triangle. (ignored for ``'gen'``) overwrite_a : bool, optional Allow overwriting data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance). Default is False. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. assume_a : str, optional Valid entries are explained above. transposed: bool, optional If True, ``a^T x = b`` for real matrices, raises `NotImplementedError` for complex matrices (only for True). Returns ------- x : (N, NRHS) ndarray The solution array. Raises ------ ValueError If size mismatches detected or input a is not square. LinAlgError If the matrix is singular. LinAlgWarning If an ill-conditioned input a is detected. NotImplementedError If transposed is True and input a is a complex matrix. Examples -------- Given `a` and `b`, solve for `x`: >>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) >>> b = np.array([2, 4, -1]) >>> from scipy import linalg >>> x = linalg.solve(a, b) >>> x array([ 2., -2., 9.]) >>> np.dot(a, x) == b array([ True, True, True], dtype=bool) Notes ----- If the input b matrix is a 1-D array with N elements, when supplied together with an NxN input a, it is assumed as a valid column vector despite the apparent size mismatch. This is compatible with the numpy.dot() behavior and the returned result is still 1-D array. The generic, symmetric, Hermitian and positive definite solutions are obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of LAPACK respectively. """ # Flags for 1-D or N-D right-hand side b_is_1D = False a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) b1 = atleast_1d(_asarray_validated(b, check_finite=check_finite)) n = a1.shape[0] overwrite_a = overwrite_a or _datacopied(a1, a) overwrite_b = overwrite_b or _datacopied(b1, b) if a1.shape[0] != a1.shape[1]: raise ValueError('Input a needs to be a square matrix.') if n != b1.shape[0]: # Last chance to catch 1x1 scalar a and 1-D b arrays if not (n == 1 and b1.size != 0): raise ValueError('Input b has to have same number of rows as ' 'input a') # accommodate empty arrays if b1.size == 0: return np.asfortranarray(b1.copy()) # regularize 1-D b arrays to 2D if b1.ndim == 1: if n == 1: b1 = b1[None, :] else: b1 = b1[:, None] b_is_1D = True # Backwards compatibility - old keyword. if sym_pos: assume_a = 'pos' if assume_a not in ('gen', 'sym', 'her', 'pos'): raise ValueError('{} is not a recognized matrix structure' ''.format(assume_a)) # for a real matrix, describe it as "symmetric", not "hermitian" # (lapack doesn't know what to do with real hermitian matrices) if assume_a == 'her' and not np.iscomplexobj(a1): assume_a = 'sym' # Deprecate keyword "debug" if debug is not None: warn('Use of the "debug" keyword is deprecated ' 'and this keyword will be removed in future ' 'versions of SciPy.', DeprecationWarning, stacklevel=2) # Get the correct lamch function. # The LAMCH functions only exists for S and D # So for complex values we have to convert to real/double. if a1.dtype.char in 'fF': # single precision lamch = get_lapack_funcs('lamch', dtype='f') else: lamch = get_lapack_funcs('lamch', dtype='d') # Currently we do not have the other forms of the norm calculators # lansy, lanpo, lanhe. # However, in any case they only reduce computations slightly... lange = get_lapack_funcs('lange', (a1,)) # Since the I-norm and 1-norm are the same for symmetric matrices # we can collect them all in this one call # Note however, that when issuing 'gen' and form!='none', then # the I-norm should be used if transposed: trans = 1 norm = 'I' if np.iscomplexobj(a1): raise NotImplementedError('scipy.linalg.solve can currently ' 'not solve a^T x = b or a^H x = b ' 'for complex matrices.') else: trans = 0 norm = '1' anorm = lange(norm, a1) # Generalized case 'gesv' if assume_a == 'gen': gecon, getrf, getrs = get_lapack_funcs(('gecon', 'getrf', 'getrs'), (a1, b1)) lu, ipvt, info = getrf(a1, overwrite_a=overwrite_a) _solve_check(n, info) x, info = getrs(lu, ipvt, b1, trans=trans, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = gecon(lu, anorm, norm=norm) # Hermitian case 'hesv' elif assume_a == 'her': hecon, hesv, hesv_lw = get_lapack_funcs(('hecon', 'hesv', 'hesv_lwork'), (a1, b1)) lwork = _compute_lwork(hesv_lw, n, lower) lu, ipvt, x, info = hesv(a1, b1, lwork=lwork, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = hecon(lu, ipvt, anorm) # Symmetric case 'sysv' elif assume_a == 'sym': sycon, sysv, sysv_lw = get_lapack_funcs(('sycon', 'sysv', 'sysv_lwork'), (a1, b1)) lwork = _compute_lwork(sysv_lw, n, lower) lu, ipvt, x, info = sysv(a1, b1, lwork=lwork, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = sycon(lu, ipvt, anorm) # Positive definite case 'posv' else: pocon, posv = get_lapack_funcs(('pocon', 'posv'), (a1, b1)) lu, x, info = posv(a1, b1, lower=lower, overwrite_a=overwrite_a, overwrite_b=overwrite_b) _solve_check(n, info) rcond, info = pocon(lu, anorm) _solve_check(n, info, lamch, rcond) if b_is_1D: x = x.ravel() return x def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=None, check_finite=True): """ Solve the equation `a x = b` for `x`, assuming a is a triangular matrix. Parameters ---------- a : (M, M) array_like A triangular matrix b : (M,) or (M, N) array_like Right-hand side matrix in `a x = b` lower : bool, optional Use only data contained in the lower triangle of `a`. Default is to use upper triangle. trans : {0, 1, 2, 'N', 'T', 'C'}, optional Type of system to solve: ======== ========= trans system ======== ========= 0 or 'N' a x = b 1 or 'T' a^T x = b 2 or 'C' a^H x = b ======== ========= unit_diagonal : bool, optional If True, diagonal elements of `a` are assumed to be 1 and will not be referenced. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, N) ndarray Solution to the system `a x = b`. Shape of return matches `b`. Raises ------ LinAlgError If `a` is singular Notes ----- .. versionadded:: 0.9.0 Examples -------- Solve the lower triangular system a x = b, where:: [3 0 0 0] [4] a = [2 1 0 0] b = [2] [1 0 1 0] [4] [1 1 1 1] [2] >>> from scipy.linalg import solve_triangular >>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) >>> b = np.array([4, 2, 4, 2]) >>> x = solve_triangular(a, b, lower=True) >>> x array([ 1.33333333, -0.66666667, 2.66666667, -1.33333333]) >>> a.dot(x) # Check the result array([ 4., 2., 4., 2.]) """ # Deprecate keyword "debug" if debug is not None: warn('Use of the "debug" keyword is deprecated ' 'and this keyword will be removed in the future ' 'versions of SciPy.', DeprecationWarning, stacklevel=2) a1 = _asarray_validated(a, check_finite=check_finite) b1 = _asarray_validated(b, check_finite=check_finite) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') if a1.shape[0] != b1.shape[0]: raise ValueError('shapes of a {} and b {} are incompatible' .format(a1.shape, b1.shape)) overwrite_b = overwrite_b or _datacopied(b1, b) if debug: print('solve:overwrite_b=', overwrite_b) trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans) trtrs, = get_lapack_funcs(('trtrs',), (a1, b1)) if a1.flags.f_contiguous or trans == 2: x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower, trans=trans, unitdiag=unit_diagonal) else: # transposed system is solved since trtrs expects Fortran ordering x, info = trtrs(a1.T, b1, overwrite_b=overwrite_b, lower=not lower, trans=not trans, unitdiag=unit_diagonal) if info == 0: return x if info > 0: raise LinAlgError("singular matrix: resolution failed at diagonal %d" % (info-1)) raise ValueError('illegal value in %dth argument of internal trtrs' % (-info)) def solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=None, check_finite=True): """ Solve the equation a x = b for x, assuming a is banded matrix. The matrix a is stored in `ab` using the matrix diagonal ordered form:: ab[u + i - j, j] == a[i,j] Example of `ab` (shape of a is (6,6), `u` =1, `l` =2):: * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * * Parameters ---------- (l, u) : (integer, integer) Number of non-zero lower and upper diagonals ab : (`l` + `u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Returned shape depends on the shape of `b`. Examples -------- Solve the banded system a x = b, where:: [5 2 -1 0 0] [0] [1 4 2 -1 0] [1] a = [0 1 3 2 -1] b = [2] [0 0 1 2 2] [2] [0 0 0 1 1] [3] There is one nonzero diagonal below the main diagonal (l = 1), and two above (u = 2). The diagonal banded form of the matrix is:: [* * -1 -1 -1] ab = [* 2 2 2 2] [5 4 3 2 1] [1 1 1 1 *] >>> from scipy.linalg import solve_banded >>> ab = np.array([[0, 0, -1, -1, -1], ... [0, 2, 2, 2, 2], ... [5, 4, 3, 2, 1], ... [1, 1, 1, 1, 0]]) >>> b = np.array([0, 1, 2, 2, 3]) >>> x = solve_banded((1, 2), ab, b) >>> x array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ]) """ # Deprecate keyword "debug" if debug is not None: warn('Use of the "debug" keyword is deprecated ' 'and this keyword will be removed in the future ' 'versions of SciPy.', DeprecationWarning, stacklevel=2) a1 = _asarray_validated(ab, check_finite=check_finite, as_inexact=True) b1 = _asarray_validated(b, check_finite=check_finite, as_inexact=True) # Validate shapes. if a1.shape[-1] != b1.shape[0]: raise ValueError("shapes of ab and b are not compatible.") (nlower, nupper) = l_and_u if nlower + nupper + 1 != a1.shape[0]: raise ValueError("invalid values for the number of lower and upper " "diagonals: l+u+1 (%d) does not equal ab.shape[0] " "(%d)" % (nlower + nupper + 1, ab.shape[0])) overwrite_b = overwrite_b or _datacopied(b1, b) if a1.shape[-1] == 1: b2 = np.array(b1, copy=(not overwrite_b)) b2 /= a1[1, 0] return b2 if nlower == nupper == 1: overwrite_ab = overwrite_ab or _datacopied(a1, ab) gtsv, = get_lapack_funcs(('gtsv',), (a1, b1)) du = a1[0, 1:] d = a1[1, :] dl = a1[2, :-1] du2, d, du, x, info = gtsv(dl, d, du, b1, overwrite_ab, overwrite_ab, overwrite_ab, overwrite_b) else: gbsv, = get_lapack_funcs(('gbsv',), (a1, b1)) a2 = np.zeros((2*nlower + nupper + 1, a1.shape[1]), dtype=gbsv.dtype) a2[nlower:, :] = a1 lu, piv, x, info = gbsv(nlower, nupper, a2, b1, overwrite_ab=True, overwrite_b=overwrite_b) if info == 0: return x if info > 0: raise LinAlgError("singular matrix") raise ValueError('illegal value in %d-th argument of internal ' 'gbsv/gtsv' % -info) def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, check_finite=True): """ Solve equation a x = b. a is Hermitian positive-definite banded matrix. The matrix a is stored in `ab` either in lower diagonal or upper diagonal ordered form: ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[ i - j, j] == a[i,j] (if lower form; i >= j) Example of `ab` (shape of a is (6, 6), `u` =2):: upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * * Cells marked with * are not used. Parameters ---------- ab : (`u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) lower : bool, optional Is the matrix in the lower form. (Default is upper form) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Shape of return matches shape of `b`. Examples -------- Solve the banded system A x = b, where:: [ 4 2 -1 0 0 0] [1] [ 2 5 2 -1 0 0] [2] A = [-1 2 6 2 -1 0] b = [2] [ 0 -1 2 7 2 -1] [3] [ 0 0 -1 2 8 2] [3] [ 0 0 0 -1 2 9] [3] >>> from scipy.linalg import solveh_banded `ab` contains the main diagonal and the nonzero diagonals below the main diagonal. That is, we use the lower form: >>> ab = np.array([[ 4, 5, 6, 7, 8, 9], ... [ 2, 2, 2, 2, 2, 0], ... [-1, -1, -1, -1, 0, 0]]) >>> b = np.array([1, 2, 2, 3, 3, 3]) >>> x = solveh_banded(ab, b, lower=True) >>> x array([ 0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031, 0.34733894]) Solve the Hermitian banded system H x = b, where:: [ 8 2-1j 0 0 ] [ 1 ] H = [2+1j 5 1j 0 ] b = [1+1j] [ 0 -1j 9 -2-1j] [1-2j] [ 0 0 -2+1j 6 ] [ 0 ] In this example, we put the upper diagonals in the array `hb`: >>> hb = np.array([[0, 2-1j, 1j, -2-1j], ... [8, 5, 9, 6 ]]) >>> b = np.array([1, 1+1j, 1-2j, 0]) >>> x = solveh_banded(hb, b) >>> x array([ 0.07318536-0.02939412j, 0.11877624+0.17696461j, 0.10077984-0.23035393j, -0.00479904-0.09358128j]) """ a1 = _asarray_validated(ab, check_finite=check_finite) b1 = _asarray_validated(b, check_finite=check_finite) # Validate shapes. if a1.shape[-1] != b1.shape[0]: raise ValueError("shapes of ab and b are not compatible.") overwrite_b = overwrite_b or _datacopied(b1, b) overwrite_ab = overwrite_ab or _datacopied(a1, ab) if a1.shape[0] == 2: ptsv, = get_lapack_funcs(('ptsv',), (a1, b1)) if lower: d = a1[0, :].real e = a1[1, :-1] else: d = a1[1, :].real e = a1[0, 1:].conj() d, du, x, info = ptsv(d, e, b1, overwrite_ab, overwrite_ab, overwrite_b) else: pbsv, = get_lapack_funcs(('pbsv',), (a1, b1)) c, x, info = pbsv(a1, b1, lower=lower, overwrite_ab=overwrite_ab, overwrite_b=overwrite_b) if info > 0: raise LinAlgError("%dth leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %dth argument of internal ' 'pbsv' % -info) return x def solve_toeplitz(c_or_cr, b, check_finite=True): """Solve a Toeplitz system using Levinson Recursion The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed. Parameters ---------- c_or_cr : array_like or tuple of (array_like, array_like) The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the actual shape of ``c``, it will be converted to a 1-D array. If not supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. b : (M,) or (M, K) array_like Right-hand side in ``T x = b``. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs. Returns ------- x : (M,) or (M, K) ndarray The solution to the system ``T x = b``. Shape of return matches shape of `b`. See Also -------- toeplitz : Toeplitz matrix Notes ----- The solution is computed using Levinson-Durbin recursion, which is faster than generic least-squares methods, but can be less numerically stable. Examples -------- Solve the Toeplitz system T x = b, where:: [ 1 -1 -2 -3] [1] T = [ 3 1 -1 -2] b = [2] [ 6 3 1 -1] [2] [10 6 3 1] [5] To specify the Toeplitz matrix, only the first column and the first row are needed. >>> c = np.array([1, 3, 6, 10]) # First column of T >>> r = np.array([1, -1, -2, -3]) # First row of T >>> b = np.array([1, 2, 2, 5]) >>> from scipy.linalg import solve_toeplitz, toeplitz >>> x = solve_toeplitz((c, r), b) >>> x array([ 1.66666667, -1. , -2.66666667, 2.33333333]) Check the result by creating the full Toeplitz matrix and multiplying it by `x`. We should get `b`. >>> T = toeplitz(c, r) >>> T.dot(x) array([ 1., 2., 2., 5.]) """ # If numerical stability of this algorithm is a problem, a future # developer might consider implementing other O(N^2) Toeplitz solvers, # such as GKO (https://www.jstor.org/stable/2153371) or Bareiss. r, c, b, dtype, b_shape = _validate_args_for_toeplitz_ops( c_or_cr, b, check_finite, keep_b_shape=True) # Form a 1-D array of values to be used in the matrix, containing a # reversed copy of r[1:], followed by c. vals = np.concatenate((r[-1:0:-1], c)) if b is None: raise ValueError('illegal value, `b` is a required argument') if b.ndim == 1: x, _ = levinson(vals, np.ascontiguousarray(b)) else: x = np.column_stack([levinson(vals, np.ascontiguousarray(b[:, i]))[0] for i in range(b.shape[1])]) x = x.reshape(*b_shape) return x def _get_axis_len(aname, a, axis): ax = axis if ax < 0: ax += a.ndim if 0 <= ax < a.ndim: return a.shape[ax] raise ValueError("'%saxis' entry is out of bounds" % (aname,)) def solve_circulant(c, b, singular='raise', tol=None, caxis=-1, baxis=0, outaxis=0): """Solve C x = b for x, where C is a circulant matrix. `C` is the circulant matrix associated with the vector `c`. The system is solved by doing division in Fourier space. The calculation is:: x = ifft(fft(b) / fft(c)) where `fft` and `ifft` are the fast Fourier transform and its inverse, respectively. For a large vector `c`, this is *much* faster than solving the system with the full circulant matrix. Parameters ---------- c : array_like The coefficients of the circulant matrix. b : array_like Right-hand side matrix in ``a x = b``. singular : str, optional This argument controls how a near singular circulant matrix is handled. If `singular` is "raise" and the circulant matrix is near singular, a `LinAlgError` is raised. If `singular` is "lstsq", the least squares solution is returned. Default is "raise". tol : float, optional If any eigenvalue of the circulant matrix has an absolute value that is less than or equal to `tol`, the matrix is considered to be near singular. If not given, `tol` is set to:: tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps where `abs_eigs` is the array of absolute values of the eigenvalues of the circulant matrix. caxis : int When `c` has dimension greater than 1, it is viewed as a collection of circulant vectors. In this case, `caxis` is the axis of `c` that holds the vectors of circulant coefficients. baxis : int When `b` has dimension greater than 1, it is viewed as a collection of vectors. In this case, `baxis` is the axis of `b` that holds the right-hand side vectors. outaxis : int When `c` or `b` are multidimensional, the value returned by `solve_circulant` is multidimensional. In this case, `outaxis` is the axis of the result that holds the solution vectors. Returns ------- x : ndarray Solution to the system ``C x = b``. Raises ------ LinAlgError If the circulant matrix associated with `c` is near singular. See Also -------- circulant : circulant matrix Notes ----- For a 1-D vector `c` with length `m`, and an array `b` with shape ``(m, ...)``, solve_circulant(c, b) returns the same result as solve(circulant(c), b) where `solve` and `circulant` are from `scipy.linalg`. .. versionadded:: 0.16.0 Examples -------- >>> from scipy.linalg import solve_circulant, solve, circulant, lstsq >>> c = np.array([2, 2, 4]) >>> b = np.array([1, 2, 3]) >>> solve_circulant(c, b) array([ 0.75, -0.25, 0.25]) Compare that result to solving the system with `scipy.linalg.solve`: >>> solve(circulant(c), b) array([ 0.75, -0.25, 0.25]) A singular example: >>> c = np.array([1, 1, 0, 0]) >>> b = np.array([1, 2, 3, 4]) Calling ``solve_circulant(c, b)`` will raise a `LinAlgError`. For the least square solution, use the option ``singular='lstsq'``: >>> solve_circulant(c, b, singular='lstsq') array([ 0.25, 1.25, 2.25, 1.25]) Compare to `scipy.linalg.lstsq`: >>> x, resid, rnk, s = lstsq(circulant(c), b) >>> x array([ 0.25, 1.25, 2.25, 1.25]) A broadcasting example: Suppose we have the vectors of two circulant matrices stored in an array with shape (2, 5), and three `b` vectors stored in an array with shape (3, 5). For example, >>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]]) >>> b = np.arange(15).reshape(-1, 5) We want to solve all combinations of circulant matrices and `b` vectors, with the result stored in an array with shape (2, 3, 5). When we disregard the axes of `c` and `b` that hold the vectors of coefficients, the shapes of the collections are (2,) and (3,), respectively, which are not compatible for broadcasting. To have a broadcast result with shape (2, 3), we add a trivial dimension to `c`: ``c[:, np.newaxis, :]`` has shape (2, 1, 5). The last dimension holds the coefficients of the circulant matrices, so when we call `solve_circulant`, we can use the default ``caxis=-1``. The coefficients of the `b` vectors are in the last dimension of the array `b`, so we use ``baxis=-1``. If we use the default `outaxis`, the result will have shape (5, 2, 3), so we'll use ``outaxis=-1`` to put the solution vectors in the last dimension. >>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1) >>> x.shape (2, 3, 5) >>> np.set_printoptions(precision=3) # For compact output of numbers. >>> x array([[[-0.118, 0.22 , 1.277, -0.142, 0.302], [ 0.651, 0.989, 2.046, 0.627, 1.072], [ 1.42 , 1.758, 2.816, 1.396, 1.841]], [[ 0.401, 0.304, 0.694, -0.867, 0.377], [ 0.856, 0.758, 1.149, -0.412, 0.831], [ 1.31 , 1.213, 1.603, 0.042, 1.286]]]) Check by solving one pair of `c` and `b` vectors (cf. ``x[1, 1, :]``): >>> solve_circulant(c[1], b[1, :]) array([ 0.856, 0.758, 1.149, -0.412, 0.831]) """ c = np.atleast_1d(c) nc = _get_axis_len("c", c, caxis) b = np.atleast_1d(b) nb = _get_axis_len("b", b, baxis) if nc != nb: raise ValueError('Shapes of c {} and b {} are incompatible' .format(c.shape, b.shape)) fc = np.fft.fft(np.rollaxis(c, caxis, c.ndim), axis=-1) abs_fc = np.abs(fc) if tol is None: # This is the same tolerance as used in np.linalg.matrix_rank. tol = abs_fc.max(axis=-1) * nc * np.finfo(np.float64).eps if tol.shape != (): tol.shape = tol.shape + (1,) else: tol = np.atleast_1d(tol) near_zeros = abs_fc <= tol is_near_singular = np.any(near_zeros) if is_near_singular: if singular == 'raise': raise LinAlgError("near singular circulant matrix.") else: # Replace the small values with 1 to avoid errors in the # division fb/fc below. fc[near_zeros] = 1 fb = np.fft.fft(np.rollaxis(b, baxis, b.ndim), axis=-1) q = fb / fc if is_near_singular: # `near_zeros` is a boolean array, same shape as `c`, that is # True where `fc` is (near) zero. `q` is the broadcasted result # of fb / fc, so to set the values of `q` to 0 where `fc` is near # zero, we use a mask that is the broadcast result of an array # of True values shaped like `b` with `near_zeros`. mask = np.ones_like(b, dtype=bool) & near_zeros q[mask] = 0 x = np.fft.ifft(q, axis=-1) if not (np.iscomplexobj(c) or np.iscomplexobj(b)): x = x.real if outaxis != -1: x = np.rollaxis(x, -1, outaxis) return x # matrix inversion def inv(a, overwrite_a=False, check_finite=True): """ Compute the inverse of a matrix. Parameters ---------- a : array_like Square matrix to be inverted. overwrite_a : bool, optional Discard data in `a` (may improve performance). Default is False. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- ainv : ndarray Inverse of the matrix `a`. Raises ------ LinAlgError If `a` is singular. ValueError If `a` is not square, or not 2D. Examples -------- >>> from scipy import linalg >>> a = np.array([[1., 2.], [3., 4.]]) >>> linalg.inv(a) array([[-2. , 1. ], [ 1.5, -0.5]]) >>> np.dot(a, linalg.inv(a)) array([[ 1., 0.], [ 0., 1.]]) """ a1 = _asarray_validated(a, check_finite=check_finite) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') overwrite_a = overwrite_a or _datacopied(a1, a) # XXX: I found no advantage or disadvantage of using finv. # finv, = get_flinalg_funcs(('inv',),(a1,)) # if finv is not None: # a_inv,info = finv(a1,overwrite_a=overwrite_a) # if info==0: # return a_inv # if info>0: raise LinAlgError, "singular matrix" # if info<0: raise ValueError('illegal value in %d-th argument of ' # 'internal inv.getrf|getri'%(-info)) getrf, getri, getri_lwork = get_lapack_funcs(('getrf', 'getri', 'getri_lwork'), (a1,)) lu, piv, info = getrf(a1, overwrite_a=overwrite_a) if info == 0: lwork = _compute_lwork(getri_lwork, a1.shape[0]) # XXX: the following line fixes curious SEGFAULT when # benchmarking 500x500 matrix inverse. This seems to # be a bug in LAPACK ?getri routine because if lwork is # minimal (when using lwork[0] instead of lwork[1]) then # all tests pass. Further investigation is required if # more such SEGFAULTs occur. lwork = int(1.01 * lwork) inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1) if info > 0: raise LinAlgError("singular matrix") if info < 0: raise ValueError('illegal value in %d-th argument of internal ' 'getrf|getri' % -info) return inv_a # Determinant def det(a, overwrite_a=False, check_finite=True): """ Compute the determinant of a matrix The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix. The determinant for a 3x3 matrix, for example, is computed as follows:: a b c d e f = A g h i det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h Parameters ---------- a : (M, M) array_like A square matrix. overwrite_a : bool, optional Allow overwriting data in a (may enhance performance). check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- det : float or complex Determinant of `a`. Notes ----- The determinant is computed via LU factorization, LAPACK routine z/dgetrf. Examples -------- >>> from scipy import linalg >>> a = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> linalg.det(a) 0.0 >>> a = np.array([[0,2,3], [4,5,6], [7,8,9]]) >>> linalg.det(a) 3.0 """ a1 = _asarray_validated(a, check_finite=check_finite) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') overwrite_a = overwrite_a or _datacopied(a1, a) fdet, = get_flinalg_funcs(('det',), (a1,)) a_det, info = fdet(a1, overwrite_a=overwrite_a) if info < 0: raise ValueError('illegal value in %d-th argument of internal ' 'det.getrf' % -info) return a_det # Linear Least Squares def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None): """ Compute least-squares solution to equation Ax = b. Compute a vector x such that the 2-norm ``|b - A x|`` is minimized. Parameters ---------- a : (M, N) array_like Left-hand side array b : (M,) or (M, K) array_like Right hand side array cond : float, optional Cutoff for 'small' singular values; used to determine effective rank of a. Singular values smaller than ``rcond * largest_singular_value`` are considered zero. overwrite_a : bool, optional Discard data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Discard data in `b` (may enhance performance). Default is False. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. lapack_driver : str, optional Which LAPACK driver is used to solve the least-squares problem. Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default (``'gelsd'``) is a good choice. However, ``'gelsy'`` can be slightly faster on many problems. ``'gelss'`` was used historically. It is generally slow but uses less memory. .. versionadded:: 0.17.0 Returns ------- x : (N,) or (N, K) ndarray Least-squares solution. Return shape matches shape of `b`. residues : (K,) ndarray or float Square of the 2-norm for each column in ``b - a x``, if ``M > N`` and ``ndim(A) == n`` (returns a scalar if b is 1-D). Otherwise a (0,)-shaped array is returned. rank : int Effective rank of `a`. s : (min(M, N),) ndarray or None Singular values of `a`. The condition number of a is ``abs(s[0] / s[-1])``. Raises ------ LinAlgError If computation does not converge. ValueError When parameters are not compatible. See Also -------- scipy.optimize.nnls : linear least squares with non-negativity constraint Notes ----- When ``'gelsy'`` is used as a driver, `residues` is set to a (0,)-shaped array and `s` is always ``None``. Examples -------- >>> from scipy.linalg import lstsq >>> import matplotlib.pyplot as plt Suppose we have the following data: >>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5]) >>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6]) We want to fit a quadratic polynomial of the form ``y = a + b*x**2`` to this data. We first form the "design matrix" M, with a constant column of 1s and a column containing ``x**2``: >>> M = x[:, np.newaxis]**[0, 2] >>> M array([[ 1. , 1. ], [ 1. , 6.25], [ 1. , 12.25], [ 1. , 16. ], [ 1. , 25. ], [ 1. , 49. ], [ 1. , 72.25]]) We want to find the least-squares solution to ``M.dot(p) = y``, where ``p`` is a vector with length 2 that holds the parameters ``a`` and ``b``. >>> p, res, rnk, s = lstsq(M, y) >>> p array([ 0.20925829, 0.12013861]) Plot the data and the fitted curve. >>> plt.plot(x, y, 'o', label='data') >>> xx = np.linspace(0, 9, 101) >>> yy = p[0] + p[1]*xx**2 >>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$') >>> plt.xlabel('x') >>> plt.ylabel('y') >>> plt.legend(framealpha=1, shadow=True) >>> plt.grid(alpha=0.25) >>> plt.show() """ a1 = _asarray_validated(a, check_finite=check_finite) b1 = _asarray_validated(b, check_finite=check_finite) if len(a1.shape) != 2: raise ValueError('Input array a should be 2D') m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 if m != b1.shape[0]: raise ValueError('Shape mismatch: a and b should have the same number' ' of rows ({} != {}).'.format(m, b1.shape[0])) if m == 0 or n == 0: # Zero-sized problem, confuses LAPACK x = np.zeros((n,) + b1.shape[1:], dtype=np.common_type(a1, b1)) if n == 0: residues = np.linalg.norm(b1, axis=0)**2 else: residues = np.empty((0,)) return x, residues, 0, np.empty((0,)) driver = lapack_driver if driver is None: driver = lstsq.default_lapack_driver if driver not in ('gelsd', 'gelsy', 'gelss'): raise ValueError('LAPACK driver "%s" is not found' % driver) lapack_func, lapack_lwork = get_lapack_funcs((driver, '%s_lwork' % driver), (a1, b1)) real_data = True if (lapack_func.dtype.kind == 'f') else False if m < n: # need to extend b matrix as it will be filled with # a larger solution matrix if len(b1.shape) == 2: b2 = np.zeros((n, nrhs), dtype=lapack_func.dtype) b2[:m, :] = b1 else: b2 = np.zeros(n, dtype=lapack_func.dtype) b2[:m] = b1 b1 = b2 overwrite_a = overwrite_a or _datacopied(a1, a) overwrite_b = overwrite_b or _datacopied(b1, b) if cond is None: cond = np.finfo(lapack_func.dtype).eps if driver in ('gelss', 'gelsd'): if driver == 'gelss': lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) v, x, s, rank, work, info = lapack_func(a1, b1, cond, lwork, overwrite_a=overwrite_a, overwrite_b=overwrite_b) elif driver == 'gelsd': if real_data: lwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) x, s, rank, info = lapack_func(a1, b1, lwork, iwork, cond, False, False) else: # complex data lwork, rwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) x, s, rank, info = lapack_func(a1, b1, lwork, rwork, iwork, cond, False, False) if info > 0: raise LinAlgError("SVD did not converge in Linear Least Squares") if info < 0: raise ValueError('illegal value in %d-th argument of internal %s' % (-info, lapack_driver)) resids = np.asarray([], dtype=x.dtype) if m > n: x1 = x[:n] if rank == n: resids = np.sum(np.abs(x[n:])**2, axis=0) x = x1 return x, resids, rank, s elif driver == 'gelsy': lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) jptv = np.zeros((a1.shape[1], 1), dtype=np.int32) v, x, j, rank, info = lapack_func(a1, b1, jptv, cond, lwork, False, False) if info < 0: raise ValueError("illegal value in %d-th argument of internal " "gelsy" % -info) if m > n: x1 = x[:n] x = x1 return x, np.array([], x.dtype), rank, None lstsq.default_lapack_driver = 'gelsd' def pinv(a, atol=None, rtol=None, return_rank=False, check_finite=True, cond=None, rcond=None): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate a generalized inverse of a matrix using its singular-value decomposition ``U @ S @ V`` in the economy mode and picking up only the columns/rows that are associated with significant singular values. If ``s`` is the maximum singular value of ``a``, then the significance cut-off value is determined by ``atol + rtol * s``. Any singular value below this value is assumed insignificant. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. atol: float, optional Absolute threshold term, default value is 0. .. versionadded:: 1.7.0 rtol: float, optional Relative threshold term, default value is ``max(M, N) * eps`` where ``eps`` is the machine precision value of the datatype of ``a``. .. versionadded:: 1.7.0 return_rank : bool, optional If True, return the effective rank of the matrix. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. cond, rcond : float, optional In older versions, these values were meant to be used as ``atol`` with ``rtol=0``. If both were given ``rcond`` overwrote ``cond`` and hence the code was not correct. Thus using these are strongly discouraged and the tolerances above are recommended instead. In fact, if provided, atol, rtol takes precedence over these keywords. .. versionchanged:: 1.7.0 Deprecated in favor of ``rtol`` and ``atol`` parameters above and will be removed in future versions of SciPy. .. versionchanged:: 1.3.0 Previously the default cutoff value was just ``eps*f`` where ``f`` was ``1e3`` for single precision and ``1e6`` for double precision. Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if `return_rank` is True. Raises ------ LinAlgError If SVD computation does not converge. Examples -------- >>> from scipy import linalg >>> rng = np.random.default_rng() >>> a = rng.standard_normal((9, 6)) >>> B = linalg.pinv(a) >>> np.allclose(a, a @ B @ a) True >>> np.allclose(B, B @ a @ B) True """ a = _asarray_validated(a, check_finite=check_finite) u, s, vh = decomp_svd.svd(a, full_matrices=False, check_finite=False) t = u.dtype.char.lower() maxS = np.max(s) if rcond or cond: warn('Use of the "cond" and "rcond" keywords are deprecated and ' 'will be removed in future versions of SciPy. Use "atol" and ' '"rtol" keywords instead', DeprecationWarning, stacklevel=2) # backwards compatible only atol and rtol are both missing if (rcond or cond) and (atol is None) and (rtol is None): atol = rcond or cond rtol = 0. atol = 0. if atol is None else atol rtol = max(a.shape) * np.finfo(t).eps if (rtol is None) else rtol if (atol < 0.) or (rtol < 0.): raise ValueError("atol and rtol values must be positive.") val = atol + maxS * rtol rank = np.sum(s > val) u = u[:, :rank] u /= s[:rank] B = (u @ vh[:rank]).conj().T if return_rank: return B, rank else: return B def pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. `scipy.linalg.pinv2` is deprecated since SciPy 1.7.0, use `scipy.linalg.pinv` instead for better tolerance control. Calculate a generalized inverse of a matrix using its singular-value decomposition and including all 'large' singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float or None Cutoff for 'small' singular values; singular values smaller than this value are considered as zero. If both are omitted, the default value ``max(M,N)*largest_singular_value*eps`` is used where ``eps`` is the machine precision value of the datatype of ``a``. .. versionchanged:: 1.3.0 Previously the default cutoff value was just ``eps*f`` where ``f`` was ``1e3`` for single precision and ``1e6`` for double precision. return_rank : bool, optional If True, return the effective rank of the matrix. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if `return_rank` is True. Raises ------ LinAlgError If SVD computation does not converge. """ # SciPy 1.7.0 2021-04-10 warn('scipy.linalg.pinv2 is deprecated since SciPy 1.7.0, use ' 'scipy.linalg.pinv instead', DeprecationWarning, stacklevel=2) if rcond is not None: cond = rcond return pinv(a=a, atol=cond, rtol=None, return_rank=return_rank, check_finite=check_finite) def pinvh(a, atol=None, rtol=None, lower=True, return_rank=False, check_finite=True, cond=None, rcond=None): """ Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix. Calculate a generalized inverse of a copmlex Hermitian/real symmetric matrix using its eigenvalue decomposition and including all eigenvalues with 'large' absolute value. Parameters ---------- a : (N, N) array_like Real symmetric or complex hermetian matrix to be pseudo-inverted atol: float, optional Absolute threshold term, default value is 0. .. versionadded:: 1.7.0 rtol: float, optional Relative threshold term, default value is ``N * eps`` where ``eps`` is the machine precision value of the datatype of ``a``. .. versionadded:: 1.7.0 lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of `a`. (Default: lower) return_rank : bool, optional If True, return the effective rank of the matrix. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. cond, rcond : float, optional In older versions, these values were meant to be used as ``atol`` with ``rtol=0``. If both were given ``rcond`` overwrote ``cond`` and hence the code was not correct. Thus using these are strongly discouraged and the tolerances above are recommended instead. In fact, if provided, atol, rtol takes precedence over these keywords. .. versionchanged:: 1.7.0 Deprecated in favor of ``rtol`` and ``atol`` parameters above and will be removed in future versions of SciPy. .. versionchanged:: 1.3.0 Previously the default cutoff value was just ``eps*f`` where ``f`` was ``1e3`` for single precision and ``1e6`` for double precision. Returns ------- B : (N, N) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if `return_rank` is True. Raises ------ LinAlgError If eigenvalue algorithm does not converge. Examples -------- >>> from scipy.linalg import pinvh >>> rng = np.random.default_rng() >>> a = rng.standard_normal((9, 6)) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, a @ B @ a) True >>> np.allclose(B, B @ a @ B) True """ a = _asarray_validated(a, check_finite=check_finite) s, u = decomp.eigh(a, lower=lower, check_finite=False) t = u.dtype.char.lower() maxS = np.max(np.abs(s)) if rcond or cond: warn('Use of the "cond" and "rcond" keywords are deprecated and ' 'will be removed in future versions of SciPy. Use "atol" and ' '"rtol" keywords instead', DeprecationWarning, stacklevel=2) # backwards compatible only atol and rtol are both missing if (rcond or cond) and (atol is None) and (rtol is None): atol = rcond or cond rtol = 0. atol = 0. if atol is None else atol rtol = max(a.shape) * np.finfo(t).eps if (rtol is None) else rtol if (atol < 0.) or (rtol < 0.): raise ValueError("atol and rtol values must be positive.") val = atol + maxS * rtol above_cutoff = (abs(s) > val) psigma_diag = 1.0 / s[above_cutoff] u = u[:, above_cutoff] B = (u * psigma_diag) @ u.conj().T if return_rank: return B, len(psigma_diag) else: return B def matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False): """ Compute a diagonal similarity transformation for row/column balancing. The balancing tries to equalize the row and column 1-norms by applying a similarity transformation such that the magnitude variation of the matrix entries is reflected to the scaling matrices. Moreover, if enabled, the matrix is first permuted to isolate the upper triangular parts of the matrix and, again if scaling is also enabled, only the remaining subblocks are subjected to scaling. The balanced matrix satisfies the following equality .. math:: B = T^{-1} A T The scaling coefficients are approximated to the nearest power of 2 to avoid round-off errors. Parameters ---------- A : (n, n) array_like Square data matrix for the balancing. permute : bool, optional The selector to define whether permutation of A is also performed prior to scaling. scale : bool, optional The selector to turn on and off the scaling. If False, the matrix will not be scaled. separate : bool, optional This switches from returning a full matrix of the transformation to a tuple of two separate 1-D permutation and scaling arrays. overwrite_a : bool, optional This is passed to xGEBAL directly. Essentially, overwrites the result to the data. It might increase the space efficiency. See LAPACK manual for details. This is False by default. Returns ------- B : (n, n) ndarray Balanced matrix T : (n, n) ndarray A possibly permuted diagonal matrix whose nonzero entries are integer powers of 2 to avoid numerical truncation errors. scale, perm : (n,) ndarray If ``separate`` keyword is set to True then instead of the array ``T`` above, the scaling and the permutation vectors are given separately as a tuple without allocating the full array ``T``. Notes ----- This algorithm is particularly useful for eigenvalue and matrix decompositions and in many cases it is already called by various LAPACK routines. The algorithm is based on the well-known technique of [1]_ and has been modified to account for special cases. See [2]_ for details which have been implemented since LAPACK v3.5.0. Before this version there are corner cases where balancing can actually worsen the conditioning. See [3]_ for such examples. The code is a wrapper around LAPACK's xGEBAL routine family for matrix balancing. .. versionadded:: 0.19.0 Examples -------- >>> from scipy import linalg >>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]]) >>> y, permscale = linalg.matrix_balance(x) >>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1) array([ 3.66666667, 0.4995005 , 0.91312162]) >>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1) array([ 1.2 , 1.27041742, 0.92658316]) # may vary >>> permscale # only powers of 2 (0.5 == 2^(-1)) array([[ 0.5, 0. , 0. ], # may vary [ 0. , 1. , 0. ], [ 0. , 0. , 1. ]]) References ---------- .. [1] : B.N. Parlett and C. Reinsch, "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors", Numerische Mathematik, Vol.13(4), 1969, :doi:`10.1007/BF02165404` .. [2] : R. James, J. Langou, B.R. Lowery, "On matrix balancing and eigenvector computation", 2014, :arxiv:`1401.5766` .. [3] : D.S. Watkins. A case where balancing is harmful. Electron. Trans. Numer. Anal, Vol.23, 2006. """ A = np.atleast_2d(_asarray_validated(A, check_finite=True)) if not np.equal(*A.shape): raise ValueError('The data matrix for balancing should be square.') gebal = get_lapack_funcs(('gebal'), (A,)) B, lo, hi, ps, info = gebal(A, scale=scale, permute=permute, overwrite_a=overwrite_a) if info < 0: raise ValueError('xGEBAL exited with the internal error ' '"illegal value in argument number {}.". See ' 'LAPACK documentation for the xGEBAL error codes.' ''.format(-info)) # Separate the permutations from the scalings and then convert to int scaling = np.ones_like(ps, dtype=float) scaling[lo:hi+1] = ps[lo:hi+1] # gebal uses 1-indexing ps = ps.astype(int, copy=False) - 1 n = A.shape[0] perm = np.arange(n) # LAPACK permutes with the ordering n --> hi, then 0--> lo if hi < n: for ind, x in enumerate(ps[hi+1:][::-1], 1): if n-ind == x: continue perm[[x, n-ind]] = perm[[n-ind, x]] if lo > 0: for ind, x in enumerate(ps[:lo]): if ind == x: continue perm[[x, ind]] = perm[[ind, x]] if separate: return B, (scaling, perm) # get the inverse permutation iperm = np.empty_like(perm) iperm[perm] = np.arange(n) return B, np.diag(scaling)[iperm, :] def _validate_args_for_toeplitz_ops(c_or_cr, b, check_finite, keep_b_shape, enforce_square=True): """Validate arguments and format inputs for toeplitz functions Parameters ---------- c_or_cr : array_like or tuple of (array_like, array_like) The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the actual shape of ``c``, it will be converted to a 1-D array. If not supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. b : (M,) or (M, K) array_like Right-hand side in ``T x = b``. check_finite : bool Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs. keep_b_shape: bool Whether to convert a (M,) dimensional b into a (M, 1) dimensional matrix. enforce_square: bool, optional If True (default), this verifies that the Toeplitz matrix is square. Returns ------- r : array 1d array corresponding to the first row of the Toeplitz matrix. c: array 1d array corresponding to the first column of the Toeplitz matrix. b: array (M,), (M, 1) or (M, K) dimensional array, post validation, corresponding to ``b``. dtype: numpy datatype ``dtype`` stores the datatype of ``r``, ``c`` and ``b``. If any of ``r``, ``c`` or ``b`` are complex, ``dtype`` is ``np.complex128``, otherwise, it is ``np.float``. b_shape: tuple Shape of ``b`` after passing it through ``_asarray_validated``. """ if isinstance(c_or_cr, tuple): c, r = c_or_cr c = _asarray_validated(c, check_finite=check_finite).ravel() r = _asarray_validated(r, check_finite=check_finite).ravel() else: c = _asarray_validated(c_or_cr, check_finite=check_finite).ravel() r = c.conjugate() if b is None: raise ValueError('`b` must be an array, not None.') b = _asarray_validated(b, check_finite=check_finite) b_shape = b.shape is_not_square = r.shape[0] != c.shape[0] if (enforce_square and is_not_square) or b.shape[0] != r.shape[0]: raise ValueError('Incompatible dimensions.') is_cmplx = np.iscomplexobj(r) or np.iscomplexobj(c) or np.iscomplexobj(b) dtype = np.complex128 if is_cmplx else np.double r, c, b = (np.asarray(i, dtype=dtype) for i in (r, c, b)) if b.ndim == 1 and not keep_b_shape: b = b.reshape(-1, 1) elif b.ndim != 1: b = b.reshape(b.shape[0], -1) return r, c, b, dtype, b_shape def matmul_toeplitz(c_or_cr, x, check_finite=False, workers=None): """Efficient Toeplitz Matrix-Matrix Multiplication using FFT This function returns the matrix multiplication between a Toeplitz matrix and a dense matrix. The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed. Parameters ---------- c_or_cr : array_like or tuple of (array_like, array_like) The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the actual shape of ``c``, it will be converted to a 1-D array. If not supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. x : (M,) or (M, K) array_like Matrix with which to multiply. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs. workers : int, optional To pass to scipy.fft.fft and ifft. Maximum number of workers to use for parallel computation. If negative, the value wraps around from ``os.cpu_count()``. See scipy.fft.fft for more details. Returns ------- T @ x : (M,) or (M, K) ndarray The result of the matrix multiplication ``T @ x``. Shape of return matches shape of `x`. See Also -------- toeplitz : Toeplitz matrix solve_toeplitz : Solve a Toeplitz system using Levinson Recursion Notes ----- The Toeplitz matrix is embedded in a circulant matrix and the FFT is used to efficiently calculate the matrix-matrix product. Because the computation is based on the FFT, integer inputs will result in floating point outputs. This is unlike NumPy's `matmul`, which preserves the data type of the input. This is partly based on the implementation that can be found in [1]_, licensed under the MIT license. More information about the method can be found in reference [2]_. References [3]_ and [4]_ have more reference implementations in Python. .. versionadded:: 1.6.0 References ---------- .. [1] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, Andrew Gordon Wilson, "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration" with contributions from Max Balandat and Ruihan Wu. Available online: https://github.com/cornellius-gp/gpytorch .. [2] J. Demmel, P. Koev, and X. Li, "A Brief Survey of Direct Linear Solvers". In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000. Available at: http://www.netlib.org/utk/people/JackDongarra/etemplates/node384.html .. [3] R. Scheibler, E. Bezzam, I. Dokmanic, Pyroomacoustics: A Python package for audio room simulations and array processing algorithms, Proc. IEEE ICASSP, Calgary, CA, 2018. https://github.com/LCAV/pyroomacoustics/blob/pypi-release/ pyroomacoustics/adaptive/util.py .. [4] Marano S, Edwards B, Ferrari G and Fah D (2017), "Fitting Earthquake Spectra: Colored Noise and Incomplete Data", Bulletin of the Seismological Society of America., January, 2017. Vol. 107(1), pp. 276-291. Examples -------- Multiply the Toeplitz matrix T with matrix x:: [ 1 -1 -2 -3] [1 10] T = [ 3 1 -1 -2] x = [2 11] [ 6 3 1 -1] [2 11] [10 6 3 1] [5 19] To specify the Toeplitz matrix, only the first column and the first row are needed. >>> c = np.array([1, 3, 6, 10]) # First column of T >>> r = np.array([1, -1, -2, -3]) # First row of T >>> x = np.array([[1, 10], [2, 11], [2, 11], [5, 19]]) >>> from scipy.linalg import toeplitz, matmul_toeplitz >>> matmul_toeplitz((c, r), x) array([[-20., -80.], [ -7., -8.], [ 9., 85.], [ 33., 218.]]) Check the result by creating the full Toeplitz matrix and multiplying it by ``x``. >>> toeplitz(c, r) @ x array([[-20, -80], [ -7, -8], [ 9, 85], [ 33, 218]]) The full matrix is never formed explicitly, so this routine is suitable for very large Toeplitz matrices. >>> n = 1000000 >>> matmul_toeplitz([1] + [0]*(n-1), np.ones(n)) array([1., 1., 1., ..., 1., 1., 1.]) """ from ..fft import fft, ifft, rfft, irfft r, c, x, dtype, x_shape = _validate_args_for_toeplitz_ops( c_or_cr, x, check_finite, keep_b_shape=False, enforce_square=False) n, m = x.shape T_nrows = len(c) T_ncols = len(r) p = T_nrows + T_ncols - 1 # equivalent to len(embedded_col) embedded_col = np.concatenate((c, r[-1:0:-1])) if np.iscomplexobj(embedded_col) or np.iscomplexobj(x): fft_mat = fft(embedded_col, axis=0, workers=workers).reshape(-1, 1) fft_x = fft(x, n=p, axis=0, workers=workers) mat_times_x = ifft(fft_mat*fft_x, axis=0, workers=workers)[:T_nrows, :] else: # Real inputs; using rfft is faster fft_mat = rfft(embedded_col, axis=0, workers=workers).reshape(-1, 1) fft_x = rfft(x, n=p, axis=0, workers=workers) mat_times_x = irfft(fft_mat*fft_x, axis=0, workers=workers, n=p)[:T_nrows, :] return_shape = (T_nrows,) if len(x_shape) == 1 else (T_nrows, m) return mat_times_x.reshape(*return_shape)