# # Created by: Pearu Peterson, March 2002 # """ Test functions for linalg.matfuncs module """ import random import functools import numpy as np from numpy import array, identity, dot, sqrt from numpy.testing import ( assert_array_equal, assert_array_less, assert_equal, assert_array_almost_equal, assert_allclose, assert_, assert_warns) import pytest import scipy.linalg from scipy.linalg import (funm, signm, logm, sqrtm, fractional_matrix_power, expm, expm_frechet, expm_cond, norm, khatri_rao) from scipy.linalg import _matfuncs_inv_ssq import scipy.linalg._expm_frechet from scipy.optimize import minimize def _get_al_mohy_higham_2012_experiment_1(): """ Return the test matrix from Experiment (1) of [1]_. References ---------- .. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012) "Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm." SIAM Journal on Scientific Computing, 34 (4). C152-C169. ISSN 1095-7197 """ A = np.array([ [3.2346e-1, 3e4, 3e4, 3e4], [0, 3.0089e-1, 3e4, 3e4], [0, 0, 3.2210e-1, 3e4], [0, 0, 0, 3.0744e-1]], dtype=float) return A class TestSignM: def test_nils(self): a = array([[29.2, -24.2, 69.5, 49.8, 7.], [-9.2, 5.2, -18., -16.8, -2.], [-10., 6., -20., -18., -2.], [-9.6, 9.6, -25.5, -15.4, -2.], [9.8, -4.8, 18., 18.2, 2.]]) cr = array([[11.94933333,-2.24533333,15.31733333,21.65333333,-2.24533333], [-3.84266667,0.49866667,-4.59066667,-7.18666667,0.49866667], [-4.08,0.56,-4.92,-7.6,0.56], [-4.03466667,1.04266667,-5.59866667,-7.02666667,1.04266667], [4.15733333,-0.50133333,4.90933333,7.81333333,-0.50133333]]) r = signm(a) assert_array_almost_equal(r,cr) def test_defective1(self): a = array([[0.0,1,0,0],[1,0,1,0],[0,0,0,1],[0,0,1,0]]) signm(a, disp=False) #XXX: what would be the correct result? def test_defective2(self): a = array(( [29.2,-24.2,69.5,49.8,7.0], [-9.2,5.2,-18.0,-16.8,-2.0], [-10.0,6.0,-20.0,-18.0,-2.0], [-9.6,9.6,-25.5,-15.4,-2.0], [9.8,-4.8,18.0,18.2,2.0])) signm(a, disp=False) #XXX: what would be the correct result? def test_defective3(self): a = array([[-2., 25., 0., 0., 0., 0., 0.], [0., -3., 10., 3., 3., 3., 0.], [0., 0., 2., 15., 3., 3., 0.], [0., 0., 0., 0., 15., 3., 0.], [0., 0., 0., 0., 3., 10., 0.], [0., 0., 0., 0., 0., -2., 25.], [0., 0., 0., 0., 0., 0., -3.]]) signm(a, disp=False) #XXX: what would be the correct result? class TestLogM: def test_nils(self): a = array([[-2., 25., 0., 0., 0., 0., 0.], [0., -3., 10., 3., 3., 3., 0.], [0., 0., 2., 15., 3., 3., 0.], [0., 0., 0., 0., 15., 3., 0.], [0., 0., 0., 0., 3., 10., 0.], [0., 0., 0., 0., 0., -2., 25.], [0., 0., 0., 0., 0., 0., -3.]]) m = (identity(7)*3.1+0j)-a logm(m, disp=False) #XXX: what would be the correct result? def test_al_mohy_higham_2012_experiment_1_logm(self): # The logm completes the round trip successfully. # Note that the expm leg of the round trip is badly conditioned. A = _get_al_mohy_higham_2012_experiment_1() A_logm, info = logm(A, disp=False) A_round_trip = expm(A_logm) assert_allclose(A_round_trip, A, rtol=1e-5, atol=1e-14) def test_al_mohy_higham_2012_experiment_1_funm_log(self): # The raw funm with np.log does not complete the round trip. # Note that the expm leg of the round trip is badly conditioned. A = _get_al_mohy_higham_2012_experiment_1() A_funm_log, info = funm(A, np.log, disp=False) A_round_trip = expm(A_funm_log) assert_(not np.allclose(A_round_trip, A, rtol=1e-5, atol=1e-14)) def test_round_trip_random_float(self): np.random.seed(1234) for n in range(1, 6): M_unscaled = np.random.randn(n, n) for scale in np.logspace(-4, 4, 9): M = M_unscaled * scale # Eigenvalues are related to the branch cut. W = np.linalg.eigvals(M) err_msg = 'M:{0} eivals:{1}'.format(M, W) # Check sqrtm round trip because it is used within logm. M_sqrtm, info = sqrtm(M, disp=False) M_sqrtm_round_trip = M_sqrtm.dot(M_sqrtm) assert_allclose(M_sqrtm_round_trip, M) # Check logm round trip. M_logm, info = logm(M, disp=False) M_logm_round_trip = expm(M_logm) assert_allclose(M_logm_round_trip, M, err_msg=err_msg) def test_round_trip_random_complex(self): np.random.seed(1234) for n in range(1, 6): M_unscaled = np.random.randn(n, n) + 1j * np.random.randn(n, n) for scale in np.logspace(-4, 4, 9): M = M_unscaled * scale M_logm, info = logm(M, disp=False) M_round_trip = expm(M_logm) assert_allclose(M_round_trip, M) def test_logm_type_preservation_and_conversion(self): # The logm matrix function should preserve the type of a matrix # whose eigenvalues are positive with zero imaginary part. # Test this preservation for variously structured matrices. complex_dtype_chars = ('F', 'D', 'G') for matrix_as_list in ( [[1, 0], [0, 1]], [[1, 0], [1, 1]], [[2, 1], [1, 1]], [[2, 3], [1, 2]]): # check that the spectrum has the expected properties W = scipy.linalg.eigvals(matrix_as_list) assert_(not any(w.imag or w.real < 0 for w in W)) # check float type preservation A = np.array(matrix_as_list, dtype=float) A_logm, info = logm(A, disp=False) assert_(A_logm.dtype.char not in complex_dtype_chars) # check complex type preservation A = np.array(matrix_as_list, dtype=complex) A_logm, info = logm(A, disp=False) assert_(A_logm.dtype.char in complex_dtype_chars) # check float->complex type conversion for the matrix negation A = -np.array(matrix_as_list, dtype=float) A_logm, info = logm(A, disp=False) assert_(A_logm.dtype.char in complex_dtype_chars) def test_complex_spectrum_real_logm(self): # This matrix has complex eigenvalues and real logm. # Its output dtype depends on its input dtype. M = [[1, 1, 2], [2, 1, 1], [1, 2, 1]] for dt in float, complex: X = np.array(M, dtype=dt) w = scipy.linalg.eigvals(X) assert_(1e-2 < np.absolute(w.imag).sum()) Y, info = logm(X, disp=False) assert_(np.issubdtype(Y.dtype, np.inexact)) assert_allclose(expm(Y), X) def test_real_mixed_sign_spectrum(self): # These matrices have real eigenvalues with mixed signs. # The output logm dtype is complex, regardless of input dtype. for M in ( [[1, 0], [0, -1]], [[0, 1], [1, 0]]): for dt in float, complex: A = np.array(M, dtype=dt) A_logm, info = logm(A, disp=False) assert_(np.issubdtype(A_logm.dtype, np.complexfloating)) def test_exactly_singular(self): A = np.array([[0, 0], [1j, 1j]]) B = np.asarray([[1, 1], [0, 0]]) for M in A, A.T, B, B.T: expected_warning = _matfuncs_inv_ssq.LogmExactlySingularWarning L, info = assert_warns(expected_warning, logm, M, disp=False) E = expm(L) assert_allclose(E, M, atol=1e-14) def test_nearly_singular(self): M = np.array([[1e-100]]) expected_warning = _matfuncs_inv_ssq.LogmNearlySingularWarning L, info = assert_warns(expected_warning, logm, M, disp=False) E = expm(L) assert_allclose(E, M, atol=1e-14) def test_opposite_sign_complex_eigenvalues(self): # See gh-6113 E = [[0, 1], [-1, 0]] L = [[0, np.pi*0.5], [-np.pi*0.5, 0]] assert_allclose(expm(L), E, atol=1e-14) assert_allclose(logm(E), L, atol=1e-14) E = [[1j, 4], [0, -1j]] L = [[1j*np.pi*0.5, 2*np.pi], [0, -1j*np.pi*0.5]] assert_allclose(expm(L), E, atol=1e-14) assert_allclose(logm(E), L, atol=1e-14) E = [[1j, 0], [0, -1j]] L = [[1j*np.pi*0.5, 0], [0, -1j*np.pi*0.5]] assert_allclose(expm(L), E, atol=1e-14) assert_allclose(logm(E), L, atol=1e-14) class TestSqrtM: def test_round_trip_random_float(self): np.random.seed(1234) for n in range(1, 6): M_unscaled = np.random.randn(n, n) for scale in np.logspace(-4, 4, 9): M = M_unscaled * scale M_sqrtm, info = sqrtm(M, disp=False) M_sqrtm_round_trip = M_sqrtm.dot(M_sqrtm) assert_allclose(M_sqrtm_round_trip, M) def test_round_trip_random_complex(self): np.random.seed(1234) for n in range(1, 6): M_unscaled = np.random.randn(n, n) + 1j * np.random.randn(n, n) for scale in np.logspace(-4, 4, 9): M = M_unscaled * scale M_sqrtm, info = sqrtm(M, disp=False) M_sqrtm_round_trip = M_sqrtm.dot(M_sqrtm) assert_allclose(M_sqrtm_round_trip, M) def test_bad(self): # See https://web.archive.org/web/20051220232650/http://www.maths.man.ac.uk/~nareports/narep336.ps.gz e = 2**-5 se = sqrt(e) a = array([[1.0,0,0,1], [0,e,0,0], [0,0,e,0], [0,0,0,1]]) sa = array([[1,0,0,0.5], [0,se,0,0], [0,0,se,0], [0,0,0,1]]) n = a.shape[0] assert_array_almost_equal(dot(sa,sa),a) # Check default sqrtm. esa = sqrtm(a, disp=False, blocksize=n)[0] assert_array_almost_equal(dot(esa,esa),a) # Check sqrtm with 2x2 blocks. esa = sqrtm(a, disp=False, blocksize=2)[0] assert_array_almost_equal(dot(esa,esa),a) def test_sqrtm_type_preservation_and_conversion(self): # The sqrtm matrix function should preserve the type of a matrix # whose eigenvalues are nonnegative with zero imaginary part. # Test this preservation for variously structured matrices. complex_dtype_chars = ('F', 'D', 'G') for matrix_as_list in ( [[1, 0], [0, 1]], [[1, 0], [1, 1]], [[2, 1], [1, 1]], [[2, 3], [1, 2]], [[1, 1], [1, 1]]): # check that the spectrum has the expected properties W = scipy.linalg.eigvals(matrix_as_list) assert_(not any(w.imag or w.real < 0 for w in W)) # check float type preservation A = np.array(matrix_as_list, dtype=float) A_sqrtm, info = sqrtm(A, disp=False) assert_(A_sqrtm.dtype.char not in complex_dtype_chars) # check complex type preservation A = np.array(matrix_as_list, dtype=complex) A_sqrtm, info = sqrtm(A, disp=False) assert_(A_sqrtm.dtype.char in complex_dtype_chars) # check float->complex type conversion for the matrix negation A = -np.array(matrix_as_list, dtype=float) A_sqrtm, info = sqrtm(A, disp=False) assert_(A_sqrtm.dtype.char in complex_dtype_chars) def test_sqrtm_type_conversion_mixed_sign_or_complex_spectrum(self): complex_dtype_chars = ('F', 'D', 'G') for matrix_as_list in ( [[1, 0], [0, -1]], [[0, 1], [1, 0]], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]): # check that the spectrum has the expected properties W = scipy.linalg.eigvals(matrix_as_list) assert_(any(w.imag or w.real < 0 for w in W)) # check complex->complex A = np.array(matrix_as_list, dtype=complex) A_sqrtm, info = sqrtm(A, disp=False) assert_(A_sqrtm.dtype.char in complex_dtype_chars) # check float->complex A = np.array(matrix_as_list, dtype=float) A_sqrtm, info = sqrtm(A, disp=False) assert_(A_sqrtm.dtype.char in complex_dtype_chars) def test_blocksizes(self): # Make sure I do not goof up the blocksizes when they do not divide n. np.random.seed(1234) for n in range(1, 8): A = np.random.rand(n, n) + 1j*np.random.randn(n, n) A_sqrtm_default, info = sqrtm(A, disp=False, blocksize=n) assert_allclose(A, np.linalg.matrix_power(A_sqrtm_default, 2)) for blocksize in range(1, 10): A_sqrtm_new, info = sqrtm(A, disp=False, blocksize=blocksize) assert_allclose(A_sqrtm_default, A_sqrtm_new) def test_al_mohy_higham_2012_experiment_1(self): # Matrix square root of a tricky upper triangular matrix. A = _get_al_mohy_higham_2012_experiment_1() A_sqrtm, info = sqrtm(A, disp=False) A_round_trip = A_sqrtm.dot(A_sqrtm) assert_allclose(A_round_trip, A, rtol=1e-5) assert_allclose(np.tril(A_round_trip), np.tril(A)) def test_strict_upper_triangular(self): # This matrix has no square root. for dt in int, float: A = np.array([ [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3], [0, 0, 0, 0]], dtype=dt) A_sqrtm, info = sqrtm(A, disp=False) assert_(np.isnan(A_sqrtm).all()) def test_weird_matrix(self): # The square root of matrix B exists. for dt in int, float: A = np.array([ [0, 0, 1], [0, 0, 0], [0, 1, 0]], dtype=dt) B = np.array([ [0, 1, 0], [0, 0, 0], [0, 0, 0]], dtype=dt) assert_array_equal(B, A.dot(A)) # But scipy sqrtm is not clever enough to find it. B_sqrtm, info = sqrtm(B, disp=False) assert_(np.isnan(B_sqrtm).all()) def test_disp(self): np.random.seed(1234) A = np.random.rand(3, 3) B = sqrtm(A, disp=True) assert_allclose(B.dot(B), A) def test_opposite_sign_complex_eigenvalues(self): M = [[2j, 4], [0, -2j]] R = [[1+1j, 2], [0, 1-1j]] assert_allclose(np.dot(R, R), M, atol=1e-14) assert_allclose(sqrtm(M), R, atol=1e-14) def test_gh4866(self): M = np.array([[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]]) R = np.array([[sqrt(0.5), 0, 0, sqrt(0.5)], [0, 0, 0, 0], [0, 0, 0, 0], [sqrt(0.5), 0, 0, sqrt(0.5)]]) assert_allclose(np.dot(R, R), M, atol=1e-14) assert_allclose(sqrtm(M), R, atol=1e-14) def test_gh5336(self): M = np.diag([2, 1, 0]) R = np.diag([sqrt(2), 1, 0]) assert_allclose(np.dot(R, R), M, atol=1e-14) assert_allclose(sqrtm(M), R, atol=1e-14) def test_gh7839(self): M = np.zeros((2, 2)) R = np.zeros((2, 2)) assert_allclose(np.dot(R, R), M, atol=1e-14) assert_allclose(sqrtm(M), R, atol=1e-14) class TestFractionalMatrixPower: def test_round_trip_random_complex(self): np.random.seed(1234) for p in range(1, 5): for n in range(1, 5): M_unscaled = np.random.randn(n, n) + 1j * np.random.randn(n, n) for scale in np.logspace(-4, 4, 9): M = M_unscaled * scale M_root = fractional_matrix_power(M, 1/p) M_round_trip = np.linalg.matrix_power(M_root, p) assert_allclose(M_round_trip, M) def test_round_trip_random_float(self): # This test is more annoying because it can hit the branch cut; # this happens when the matrix has an eigenvalue # with no imaginary component and with a real negative component, # and it means that the principal branch does not exist. np.random.seed(1234) for p in range(1, 5): for n in range(1, 5): M_unscaled = np.random.randn(n, n) for scale in np.logspace(-4, 4, 9): M = M_unscaled * scale M_root = fractional_matrix_power(M, 1/p) M_round_trip = np.linalg.matrix_power(M_root, p) assert_allclose(M_round_trip, M) def test_larger_abs_fractional_matrix_powers(self): np.random.seed(1234) for n in (2, 3, 5): for i in range(10): M = np.random.randn(n, n) + 1j * np.random.randn(n, n) M_one_fifth = fractional_matrix_power(M, 0.2) # Test the round trip. M_round_trip = np.linalg.matrix_power(M_one_fifth, 5) assert_allclose(M, M_round_trip) # Test a large abs fractional power. X = fractional_matrix_power(M, -5.4) Y = np.linalg.matrix_power(M_one_fifth, -27) assert_allclose(X, Y) # Test another large abs fractional power. X = fractional_matrix_power(M, 3.8) Y = np.linalg.matrix_power(M_one_fifth, 19) assert_allclose(X, Y) def test_random_matrices_and_powers(self): # Each independent iteration of this fuzz test picks random parameters. # It tries to hit some edge cases. np.random.seed(1234) nsamples = 20 for i in range(nsamples): # Sample a matrix size and a random real power. n = random.randrange(1, 5) p = np.random.randn() # Sample a random real or complex matrix. matrix_scale = np.exp(random.randrange(-4, 5)) A = np.random.randn(n, n) if random.choice((True, False)): A = A + 1j * np.random.randn(n, n) A = A * matrix_scale # Check a couple of analytically equivalent ways # to compute the fractional matrix power. # These can be compared because they both use the principal branch. A_power = fractional_matrix_power(A, p) A_logm, info = logm(A, disp=False) A_power_expm_logm = expm(A_logm * p) assert_allclose(A_power, A_power_expm_logm) def test_al_mohy_higham_2012_experiment_1(self): # Fractional powers of a tricky upper triangular matrix. A = _get_al_mohy_higham_2012_experiment_1() # Test remainder matrix power. A_funm_sqrt, info = funm(A, np.sqrt, disp=False) A_sqrtm, info = sqrtm(A, disp=False) A_rem_power = _matfuncs_inv_ssq._remainder_matrix_power(A, 0.5) A_power = fractional_matrix_power(A, 0.5) assert_array_equal(A_rem_power, A_power) assert_allclose(A_sqrtm, A_power) assert_allclose(A_sqrtm, A_funm_sqrt) # Test more fractional powers. for p in (1/2, 5/3): A_power = fractional_matrix_power(A, p) A_round_trip = fractional_matrix_power(A_power, 1/p) assert_allclose(A_round_trip, A, rtol=1e-2) assert_allclose(np.tril(A_round_trip, 1), np.tril(A, 1)) def test_briggs_helper_function(self): np.random.seed(1234) for a in np.random.randn(10) + 1j * np.random.randn(10): for k in range(5): x_observed = _matfuncs_inv_ssq._briggs_helper_function(a, k) x_expected = a ** np.exp2(-k) - 1 assert_allclose(x_observed, x_expected) def test_type_preservation_and_conversion(self): # The fractional_matrix_power matrix function should preserve # the type of a matrix whose eigenvalues # are positive with zero imaginary part. # Test this preservation for variously structured matrices. complex_dtype_chars = ('F', 'D', 'G') for matrix_as_list in ( [[1, 0], [0, 1]], [[1, 0], [1, 1]], [[2, 1], [1, 1]], [[2, 3], [1, 2]]): # check that the spectrum has the expected properties W = scipy.linalg.eigvals(matrix_as_list) assert_(not any(w.imag or w.real < 0 for w in W)) # Check various positive and negative powers # with absolute values bigger and smaller than 1. for p in (-2.4, -0.9, 0.2, 3.3): # check float type preservation A = np.array(matrix_as_list, dtype=float) A_power = fractional_matrix_power(A, p) assert_(A_power.dtype.char not in complex_dtype_chars) # check complex type preservation A = np.array(matrix_as_list, dtype=complex) A_power = fractional_matrix_power(A, p) assert_(A_power.dtype.char in complex_dtype_chars) # check float->complex for the matrix negation A = -np.array(matrix_as_list, dtype=float) A_power = fractional_matrix_power(A, p) assert_(A_power.dtype.char in complex_dtype_chars) def test_type_conversion_mixed_sign_or_complex_spectrum(self): complex_dtype_chars = ('F', 'D', 'G') for matrix_as_list in ( [[1, 0], [0, -1]], [[0, 1], [1, 0]], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]): # check that the spectrum has the expected properties W = scipy.linalg.eigvals(matrix_as_list) assert_(any(w.imag or w.real < 0 for w in W)) # Check various positive and negative powers # with absolute values bigger and smaller than 1. for p in (-2.4, -0.9, 0.2, 3.3): # check complex->complex A = np.array(matrix_as_list, dtype=complex) A_power = fractional_matrix_power(A, p) assert_(A_power.dtype.char in complex_dtype_chars) # check float->complex A = np.array(matrix_as_list, dtype=float) A_power = fractional_matrix_power(A, p) assert_(A_power.dtype.char in complex_dtype_chars) @pytest.mark.xfail(reason='Too unstable across LAPACKs.') def test_singular(self): # Negative fractional powers do not work with singular matrices. for matrix_as_list in ( [[0, 0], [0, 0]], [[1, 1], [1, 1]], [[1, 2], [3, 6]], [[0, 0, 0], [0, 1, 1], [0, -1, 1]]): # Check fractional powers both for float and for complex types. for newtype in (float, complex): A = np.array(matrix_as_list, dtype=newtype) for p in (-0.7, -0.9, -2.4, -1.3): A_power = fractional_matrix_power(A, p) assert_(np.isnan(A_power).all()) for p in (0.2, 1.43): A_power = fractional_matrix_power(A, p) A_round_trip = fractional_matrix_power(A_power, 1/p) assert_allclose(A_round_trip, A) def test_opposite_sign_complex_eigenvalues(self): M = [[2j, 4], [0, -2j]] R = [[1+1j, 2], [0, 1-1j]] assert_allclose(np.dot(R, R), M, atol=1e-14) assert_allclose(fractional_matrix_power(M, 0.5), R, atol=1e-14) class TestExpM: def test_zero(self): a = array([[0.,0],[0,0]]) assert_array_almost_equal(expm(a),[[1,0],[0,1]]) def test_single_elt(self): # See gh-5853 from scipy.sparse import csc_matrix vOne = -2.02683397006j vTwo = -2.12817566856j mOne = csc_matrix([[vOne]], dtype='complex') mTwo = csc_matrix([[vTwo]], dtype='complex') outOne = expm(mOne) outTwo = expm(mTwo) assert_equal(type(outOne), type(mOne)) assert_equal(type(outTwo), type(mTwo)) assert_allclose(outOne[0, 0], complex(-0.44039415155949196, -0.8978045395698304)) assert_allclose(outTwo[0, 0], complex(-0.52896401032626006, -0.84864425749518878)) def test_empty_matrix_input(self): # handle gh-11082 A = np.zeros((0, 0)) result = expm(A) assert result.size == 0 class TestExpmFrechet: def test_expm_frechet(self): # a test of the basic functionality M = np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [0, 0, 1, 2], [0, 0, 5, 6], ], dtype=float) A = np.array([ [1, 2], [5, 6], ], dtype=float) E = np.array([ [3, 4], [7, 8], ], dtype=float) expected_expm = scipy.linalg.expm(A) expected_frechet = scipy.linalg.expm(M)[:2, 2:] for kwargs in ({}, {'method':'SPS'}, {'method':'blockEnlarge'}): observed_expm, observed_frechet = expm_frechet(A, E, **kwargs) assert_allclose(expected_expm, observed_expm) assert_allclose(expected_frechet, observed_frechet) def test_small_norm_expm_frechet(self): # methodically test matrices with a range of norms, for better coverage M_original = np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [0, 0, 1, 2], [0, 0, 5, 6], ], dtype=float) A_original = np.array([ [1, 2], [5, 6], ], dtype=float) E_original = np.array([ [3, 4], [7, 8], ], dtype=float) A_original_norm_1 = scipy.linalg.norm(A_original, 1) selected_m_list = [1, 3, 5, 7, 9, 11, 13, 15] m_neighbor_pairs = zip(selected_m_list[:-1], selected_m_list[1:]) for ma, mb in m_neighbor_pairs: ell_a = scipy.linalg._expm_frechet.ell_table_61[ma] ell_b = scipy.linalg._expm_frechet.ell_table_61[mb] target_norm_1 = 0.5 * (ell_a + ell_b) scale = target_norm_1 / A_original_norm_1 M = scale * M_original A = scale * A_original E = scale * E_original expected_expm = scipy.linalg.expm(A) expected_frechet = scipy.linalg.expm(M)[:2, 2:] observed_expm, observed_frechet = expm_frechet(A, E) assert_allclose(expected_expm, observed_expm) assert_allclose(expected_frechet, observed_frechet) def test_fuzz(self): # try a bunch of crazy inputs rfuncs = ( np.random.uniform, np.random.normal, np.random.standard_cauchy, np.random.exponential) ntests = 100 for i in range(ntests): rfunc = random.choice(rfuncs) target_norm_1 = random.expovariate(1.0) n = random.randrange(2, 16) A_original = rfunc(size=(n,n)) E_original = rfunc(size=(n,n)) A_original_norm_1 = scipy.linalg.norm(A_original, 1) scale = target_norm_1 / A_original_norm_1 A = scale * A_original E = scale * E_original M = np.vstack([ np.hstack([A, E]), np.hstack([np.zeros_like(A), A])]) expected_expm = scipy.linalg.expm(A) expected_frechet = scipy.linalg.expm(M)[:n, n:] observed_expm, observed_frechet = expm_frechet(A, E) assert_allclose(expected_expm, observed_expm) assert_allclose(expected_frechet, observed_frechet) def test_problematic_matrix(self): # this test case uncovered a bug which has since been fixed A = np.array([ [1.50591997, 1.93537998], [0.41203263, 0.23443516], ], dtype=float) E = np.array([ [1.87864034, 2.07055038], [1.34102727, 0.67341123], ], dtype=float) scipy.linalg.norm(A, 1) sps_expm, sps_frechet = expm_frechet( A, E, method='SPS') blockEnlarge_expm, blockEnlarge_frechet = expm_frechet( A, E, method='blockEnlarge') assert_allclose(sps_expm, blockEnlarge_expm) assert_allclose(sps_frechet, blockEnlarge_frechet) @pytest.mark.slow @pytest.mark.skip(reason='this test is deliberately slow') def test_medium_matrix(self): # profile this to see the speed difference n = 1000 A = np.random.exponential(size=(n, n)) E = np.random.exponential(size=(n, n)) sps_expm, sps_frechet = expm_frechet( A, E, method='SPS') blockEnlarge_expm, blockEnlarge_frechet = expm_frechet( A, E, method='blockEnlarge') assert_allclose(sps_expm, blockEnlarge_expm) assert_allclose(sps_frechet, blockEnlarge_frechet) def _help_expm_cond_search(A, A_norm, X, X_norm, eps, p): p = np.reshape(p, A.shape) p_norm = norm(p) perturbation = eps * p * (A_norm / p_norm) X_prime = expm(A + perturbation) scaled_relative_error = norm(X_prime - X) / (X_norm * eps) return -scaled_relative_error def _normalized_like(A, B): return A * (scipy.linalg.norm(B) / scipy.linalg.norm(A)) def _relative_error(f, A, perturbation): X = f(A) X_prime = f(A + perturbation) return norm(X_prime - X) / norm(X) class TestExpmConditionNumber: def test_expm_cond_smoke(self): np.random.seed(1234) for n in range(1, 4): A = np.random.randn(n, n) kappa = expm_cond(A) assert_array_less(0, kappa) def test_expm_bad_condition_number(self): A = np.array([ [-1.128679820, 9.614183771e4, -4.524855739e9, 2.924969411e14], [0, -1.201010529, 9.634696872e4, -4.681048289e9], [0, 0, -1.132893222, 9.532491830e4], [0, 0, 0, -1.179475332], ]) kappa = expm_cond(A) assert_array_less(1e36, kappa) def test_univariate(self): np.random.seed(12345) for x in np.linspace(-5, 5, num=11): A = np.array([[x]]) assert_allclose(expm_cond(A), abs(x)) for x in np.logspace(-2, 2, num=11): A = np.array([[x]]) assert_allclose(expm_cond(A), abs(x)) for i in range(10): A = np.random.randn(1, 1) assert_allclose(expm_cond(A), np.absolute(A)[0, 0]) @pytest.mark.slow def test_expm_cond_fuzz(self): np.random.seed(12345) eps = 1e-5 nsamples = 10 for i in range(nsamples): n = np.random.randint(2, 5) A = np.random.randn(n, n) A_norm = scipy.linalg.norm(A) X = expm(A) X_norm = scipy.linalg.norm(X) kappa = expm_cond(A) # Look for the small perturbation that gives the greatest # relative error. f = functools.partial(_help_expm_cond_search, A, A_norm, X, X_norm, eps) guess = np.ones(n*n) out = minimize(f, guess, method='L-BFGS-B') xopt = out.x yopt = f(xopt) p_best = eps * _normalized_like(np.reshape(xopt, A.shape), A) p_best_relerr = _relative_error(expm, A, p_best) assert_allclose(p_best_relerr, -yopt * eps) # Check that the identified perturbation indeed gives greater # relative error than random perturbations with similar norms. for j in range(5): p_rand = eps * _normalized_like(np.random.randn(*A.shape), A) assert_allclose(norm(p_best), norm(p_rand)) p_rand_relerr = _relative_error(expm, A, p_rand) assert_array_less(p_rand_relerr, p_best_relerr) # The greatest relative error should not be much greater than # eps times the condition number kappa. # In the limit as eps approaches zero it should never be greater. assert_array_less(p_best_relerr, (1 + 2*eps) * eps * kappa) class TestKhatriRao: def test_basic(self): a = khatri_rao(array([[1, 2], [3, 4]]), array([[5, 6], [7, 8]])) assert_array_equal(a, array([[5, 12], [7, 16], [15, 24], [21, 32]])) b = khatri_rao(np.empty([2, 2]), np.empty([2, 2])) assert_array_equal(b.shape, (4, 2)) def test_number_of_columns_equality(self): with pytest.raises(ValueError): a = array([[1, 2, 3], [4, 5, 6]]) b = array([[1, 2], [3, 4]]) khatri_rao(a, b) def test_to_assure_2d_array(self): with pytest.raises(ValueError): # both arrays are 1-D a = array([1, 2, 3]) b = array([4, 5, 6]) khatri_rao(a, b) with pytest.raises(ValueError): # first array is 1-D a = array([1, 2, 3]) b = array([ [1, 2, 3], [4, 5, 6] ]) khatri_rao(a, b) with pytest.raises(ValueError): # second array is 1-D a = array([ [1, 2, 3], [7, 8, 9] ]) b = array([4, 5, 6]) khatri_rao(a, b) def test_equality_of_two_equations(self): a = array([[1, 2], [3, 4]]) b = array([[5, 6], [7, 8]]) res1 = khatri_rao(a, b) res2 = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T assert_array_equal(res1, res2)