"""HiGHS Linear Optimization Methods Interface to HiGHS linear optimization software. https://www.maths.ed.ac.uk/hall/HiGHS/ .. versionadded:: 1.5.0 References ---------- .. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex method." Mathematical Programming Computation, 10 (1), 119-142, 2018. DOI: 10.1007/s12532-017-0130-5 """ import inspect import numpy as np from .optimize import _check_unknown_options, OptimizeWarning, OptimizeResult from warnings import warn from ._highs._highs_wrapper import _highs_wrapper from ._highs._highs_constants import ( CONST_I_INF, CONST_INF, MESSAGE_LEVEL_MINIMAL, MODEL_STATUS_NOTSET, MODEL_STATUS_LOAD_ERROR, MODEL_STATUS_MODEL_ERROR, MODEL_STATUS_PRESOLVE_ERROR, MODEL_STATUS_SOLVE_ERROR, MODEL_STATUS_POSTSOLVE_ERROR, MODEL_STATUS_MODEL_EMPTY, MODEL_STATUS_PRIMAL_INFEASIBLE, MODEL_STATUS_PRIMAL_UNBOUNDED, MODEL_STATUS_OPTIMAL, MODEL_STATUS_REACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND as MODEL_STATUS_RDOVUB, MODEL_STATUS_REACHED_TIME_LIMIT, MODEL_STATUS_REACHED_ITERATION_LIMIT, MODEL_STATUS_PRIMAL_DUAL_INFEASIBLE, MODEL_STATUS_DUAL_INFEASIBLE, HIGHS_SIMPLEX_STRATEGY_CHOOSE, HIGHS_SIMPLEX_STRATEGY_DUAL, HIGHS_SIMPLEX_CRASH_STRATEGY_OFF, HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_CHOOSE, HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_DANTZIG, HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_DEVEX, HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE, ) from scipy.sparse import csc_matrix, vstack, issparse def _replace_inf(x): # Replace `np.inf` with CONST_INF infs = np.isinf(x) x[infs] = np.sign(x[infs])*CONST_INF return x def _convert_to_highs_enum(option, option_str, choices): # If option is in the choices we can look it up, if not use # the default value taken from function signature and warn: try: return choices[option.lower()] except AttributeError: return choices[option] except KeyError: sig = inspect.signature(_linprog_highs) default_str = sig.parameters[option_str].default warn(f"Option {option_str} is {option}, but only values in " f"{set(choices.keys())} are allowed. Using default: " f"{default_str}.", OptimizeWarning, stacklevel=3) return choices[default_str] def _linprog_highs(lp, solver, time_limit=None, presolve=True, disp=False, maxiter=None, dual_feasibility_tolerance=None, primal_feasibility_tolerance=None, ipm_optimality_tolerance=None, simplex_dual_edge_weight_strategy=None, **unknown_options): r""" Solve the following linear programming problem using one of the HiGHS solvers: User-facing documentation is in _linprog_doc.py. Parameters ---------- lp : _LPProblem A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``. solver : "ipm" or "simplex" or None Which HiGHS solver to use. If ``None``, "simplex" will be used. Options ------- maxiter : int The maximum number of iterations to perform in either phase. For ``solver='ipm'``, this does not include the number of crossover iterations. Default is the largest possible value for an ``int`` on the platform. disp : bool Set to ``True`` if indicators of optimization status are to be printed to the console each iteration; default ``False``. time_limit : float The maximum time in seconds allotted to solve the problem; default is the largest possible value for a ``double`` on the platform. presolve : bool Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting ``True``; set to ``False`` if presolve is to be disabled. dual_feasibility_tolerance : double Dual feasibility tolerance. Default is 1e-07. The minimum of this and ``primal_feasibility_tolerance`` is used for the feasibility tolerance when ``solver='ipm'``. primal_feasibility_tolerance : double Primal feasibility tolerance. Default is 1e-07. The minimum of this and ``dual_feasibility_tolerance`` is used for the feasibility tolerance when ``solver='ipm'``. ipm_optimality_tolerance : double Optimality tolerance for ``solver='ipm'``. Default is 1e-08. Minimum possible value is 1e-12 and must be smaller than the largest possible value for a ``double`` on the platform. simplex_dual_edge_weight_strategy : str (default: None) Strategy for simplex dual edge weights. The default, ``None``, automatically selects one of the following. ``'dantzig'`` uses Dantzig's original strategy of choosing the most negative reduced cost. ``'devex'`` uses the strategy described in [15]_. ``steepest`` uses the exact steepest edge strategy as described in [16]_. ``'steepest-devex'`` begins with the exact steepest edge strategy until the computation is too costly or inexact and then switches to the devex method. Curently, using ``None`` always selects ``'steepest-devex'``, but this may change as new options become available. unknown_options : dict Optional arguments not used by this particular solver. If ``unknown_options`` is non-empty, a warning is issued listing all unused options. Returns ------- sol : dict A dictionary consisting of the fields: x : 1D array The values of the decision variables that minimizes the objective function while satisfying the constraints. fun : float The optimal value of the objective function ``c @ x``. slack : 1D array The (nominally positive) values of the slack, ``b_ub - A_ub @ x``. con : 1D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. success : bool ``True`` when the algorithm succeeds in finding an optimal solution. status : int An integer representing the exit status of the algorithm. ``0`` : Optimization terminated successfully. ``1`` : Iteration or time limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : The HiGHS solver ran into a problem. message : str A string descriptor of the exit status of the algorithm. nit : int The total number of iterations performed. For ``solver='simplex'``, this includes iterations in all phases. For ``solver='ipm'``, this does not include crossover iterations. crossover_nit : int The number of primal/dual pushes performed during the crossover routine for ``solver='ipm'``. This is ``0`` for ``solver='simplex'``. ineqlin : OptimizeResult Solution and sensitivity information corresponding to the inequality constraints, `b_ub`. A dictionary consisting of the fields: residual : np.ndnarray The (nominally positive) values of the slack variables, ``b_ub - A_ub @ x``. This quantity is also commonly referred to as "slack". marginals : np.ndarray The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the inequality constraints, `b_ub`. eqlin : OptimizeResult Solution and sensitivity information corresponding to the equality constraints, `b_eq`. A dictionary consisting of the fields: residual : np.ndarray The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. marginals : np.ndarray The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the equality constraints, `b_eq`. lower, upper : OptimizeResult Solution and sensitivity information corresponding to the lower and upper bounds on decision variables, `bounds`. residual : np.ndarray The (nominally positive) values of the quantity ``x - lb`` (lower) or ``ub - x`` (upper). marginals : np.ndarray The sensitivity (partial derivative) of the objective function with respect to the lower and upper `bounds`. Notes ----- The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain `marginals`, or partial derivatives of the objective function with respect to the right-hand side of each constraint. These partial derivatives are also referred to as "Lagrange multipliers", "dual values", and "shadow prices". The sign convention of `marginals` is opposite that of Lagrange multipliers produced by many nonlinear solvers. References ---------- .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code." Mathematical programming 5.1 (1973): 1-28. .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge simplex algorithm." Mathematical Programming 12.1 (1977): 361-371. """ _check_unknown_options(unknown_options) # Map options to HiGHS enum values simplex_dual_edge_weight_strategy_enum = _convert_to_highs_enum( simplex_dual_edge_weight_strategy, 'simplex_dual_edge_weight_strategy', choices={'dantzig': HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_DANTZIG, 'devex': HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_DEVEX, 'steepest-devex': HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_CHOOSE, 'steepest': HIGHS_SIMPLEX_DUAL_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE, None: None}) statuses = { MODEL_STATUS_NOTSET: ( 4, 'HiGHS Status Code 0: HighsModelStatusNOTSET', ), MODEL_STATUS_LOAD_ERROR: ( 4, 'HiGHS Status Code 1: HighsModelStatusLOAD_ERROR', ), MODEL_STATUS_MODEL_ERROR: ( 2, 'HiGHS Status Code 2: HighsModelStatusMODEL_ERROR', ), MODEL_STATUS_PRESOLVE_ERROR: ( 4, 'HiGHS Status Code 4: HighsModelStatusPRESOLVE_ERROR', ), MODEL_STATUS_SOLVE_ERROR: ( 4, 'HiGHS Status Code 5: HighsModelStatusSOLVE_ERROR', ), MODEL_STATUS_POSTSOLVE_ERROR: ( 4, 'HiGHS Status Code 6: HighsModelStatusPOSTSOLVE_ERROR', ), MODEL_STATUS_MODEL_EMPTY: ( 4, 'HiGHS Status Code 3: HighsModelStatusMODEL_EMPTY', ), MODEL_STATUS_RDOVUB: ( 4, 'HiGHS Status Code 10: ' 'HighsModelStatusREACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND', ), MODEL_STATUS_PRIMAL_INFEASIBLE: ( 2, "The problem is infeasible.", ), MODEL_STATUS_PRIMAL_UNBOUNDED: ( 3, "The problem is unbounded.", ), MODEL_STATUS_OPTIMAL: ( 0, "Optimization terminated successfully.", ), MODEL_STATUS_REACHED_TIME_LIMIT: ( 1, "Time limit reached.", ), MODEL_STATUS_REACHED_ITERATION_LIMIT: ( 1, "Iteration limit reached.", ), MODEL_STATUS_PRIMAL_DUAL_INFEASIBLE: ( 2, "The problem is primal/dual infeasible.", ), MODEL_STATUS_DUAL_INFEASIBLE: ( 2, "The problem is dual infeasible.", ), } c, A_ub, b_ub, A_eq, b_eq, bounds, x0 = lp lb, ub = bounds.T.copy() # separate bounds, copy->C-cntgs # highs_wrapper solves LHS <= A*x <= RHS, not equality constraints lhs_ub = -np.ones_like(b_ub)*np.inf # LHS of UB constraints is -inf rhs_ub = b_ub # RHS of UB constraints is b_ub lhs_eq = b_eq # Equality constaint is inequality rhs_eq = b_eq # constraint with LHS=RHS lhs = np.concatenate((lhs_ub, lhs_eq)) rhs = np.concatenate((rhs_ub, rhs_eq)) if issparse(A_ub) or issparse(A_eq): A = vstack((A_ub, A_eq)) else: A = np.vstack((A_ub, A_eq)) A = csc_matrix(A) options = { 'presolve': presolve, 'sense': 1, # minimization 'solver': solver, 'time_limit': time_limit, 'message_level': MESSAGE_LEVEL_MINIMAL * disp, 'dual_feasibility_tolerance': dual_feasibility_tolerance, 'ipm_optimality_tolerance': ipm_optimality_tolerance, 'primal_feasibility_tolerance': primal_feasibility_tolerance, 'simplex_dual_edge_weight_strategy': simplex_dual_edge_weight_strategy_enum, 'simplex_strategy': HIGHS_SIMPLEX_STRATEGY_DUAL, 'simplex_crash_strategy': HIGHS_SIMPLEX_CRASH_STRATEGY_OFF, 'ipm_iteration_limit': maxiter, 'simplex_iteration_limit': maxiter, } # np.inf doesn't work; use very large constant rhs = _replace_inf(rhs) lhs = _replace_inf(lhs) lb = _replace_inf(lb) ub = _replace_inf(ub) res = _highs_wrapper(c, A.indptr, A.indices, A.data, lhs, rhs, lb, ub, options) # HiGHS represents constraints as lhs/rhs, so # Ax + s = b => Ax = b - s # and we need to split up s by A_ub and A_eq if 'slack' in res: slack = res['slack'] con = np.array(slack[len(b_ub):]) slack = np.array(slack[:len(b_ub)]) else: slack, con = None, None # lagrange multipliers for equalities/inequalities and upper/lower bounds if 'lambda' in res: lamda = res['lambda'] marg_ineqlin = np.array(lamda[:len(b_ub)]) marg_eqlin = np.array(lamda[len(b_ub):]) marg_upper = res['marg_bnds'][1, :] marg_lower = res['marg_bnds'][0, :] else: marg_ineqlin, marg_eqlin = None, None marg_upper, marg_lower = None, None # this needs to be updated if we start choosing the solver intelligently solvers = {"ipm": "highs-ipm", "simplex": "highs-ds", None: "highs-ds"} # HiGHS will report OPTIMAL if the scaled model is solved to optimality # even if the unscaled original model is infeasible; # Catch that case here and provide a more useful message if ((res['status'] == MODEL_STATUS_OPTIMAL) and (res['unscaled_status'] != res['status'])): _unscaled_status, unscaled_message = statuses[res["unscaled_status"]] status, message = 4, ('An optimal solution to the scaled model was ' f'found but was {unscaled_message} in the ' 'unscaled model. For more information run with ' 'the option `disp: True`.') else: status, message = statuses[res['status']] x = np.array(res['x']) if 'x' in res else None sol = {'x': x, 'slack': slack, 'con': con, 'ineqlin': OptimizeResult({ 'residual': slack, 'marginals': marg_ineqlin, }), 'eqlin': OptimizeResult({ 'residual': con, 'marginals': marg_eqlin, }), 'lower': OptimizeResult({ 'residual': None if x is None else x - lb, 'marginals': marg_lower, }), 'upper': OptimizeResult({ 'residual': None if x is None else ub - x, 'marginals': marg_upper }), 'fun': res.get('fun'), 'status': status, 'success': res['status'] == MODEL_STATUS_OPTIMAL, 'message': message, 'nit': res.get('simplex_nit', 0) or res.get('ipm_nit', 0), 'crossover_nit': res.get('crossover_nit'), } return sol