# Author: Brian M. Clapper, G. Varoquaux, Lars Buitinck # License: BSD from numpy.testing import assert_array_equal from pytest import raises as assert_raises import pytest import numpy as np from scipy.optimize import linear_sum_assignment from scipy.sparse import random from scipy.sparse.sputils import matrix from scipy.sparse.csgraph import min_weight_full_bipartite_matching from scipy.sparse.csgraph.tests.test_matching import ( linear_sum_assignment_assertions, linear_sum_assignment_test_cases ) def test_linear_sum_assignment_input_validation(): assert_raises(ValueError, linear_sum_assignment, [1, 2, 3]) C = [[1, 2, 3], [4, 5, 6]] assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C))) assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(matrix(C))) I = np.identity(3) assert_array_equal(linear_sum_assignment(I.astype(np.bool_)), linear_sum_assignment(I)) assert_raises(ValueError, linear_sum_assignment, I.astype(str)) I[0][0] = np.nan with pytest.raises(ValueError, match="contains invalid numeric entries"): linear_sum_assignment(I) I = np.identity(3) I[1][1] = -np.inf with pytest.raises(ValueError, match="contains invalid numeric entries"): linear_sum_assignment(I) I = np.identity(3) I[:, 0] = np.inf with pytest.raises(ValueError, match="cost matrix is infeasible"): linear_sum_assignment(I) def test_constant_cost_matrix(): # Fixes #11602 n = 8 C = np.ones((n, n)) row_ind, col_ind = linear_sum_assignment(C) assert_array_equal(row_ind, np.arange(n)) assert_array_equal(col_ind, np.arange(n)) @pytest.mark.parametrize('num_rows,num_cols', [(0, 0), (2, 0), (0, 3)]) def test_linear_sum_assignment_trivial_cost(num_rows, num_cols): C = np.empty(shape=(num_cols, num_rows)) row_ind, col_ind = linear_sum_assignment(C) assert len(row_ind) == 0 assert len(col_ind) == 0 @pytest.mark.parametrize('sign,test_case', linear_sum_assignment_test_cases) def test_linear_sum_assignment_small_inputs(sign, test_case): linear_sum_assignment_assertions( linear_sum_assignment, np.array, sign, test_case) # Tests that combine scipy.optimize.linear_sum_assignment and # scipy.sparse.csgraph.min_weight_full_bipartite_matching def test_two_methods_give_same_result_on_many_sparse_inputs(): # As opposed to the test above, here we do not spell out the expected # output; only assert that the two methods give the same result. # Concretely, the below tests 100 cases of size 100x100, out of which # 36 are infeasible. np.random.seed(1234) for _ in range(100): lsa_raises = False mwfbm_raises = False sparse = random(100, 100, density=0.06, data_rvs=lambda size: np.random.randint(1, 100, size)) # In csgraph, zeros correspond to missing edges, so we explicitly # replace those with infinities dense = np.full(sparse.shape, np.inf) dense[sparse.row, sparse.col] = sparse.data sparse = sparse.tocsr() try: row_ind, col_ind = linear_sum_assignment(dense) lsa_cost = dense[row_ind, col_ind].sum() except ValueError: lsa_raises = True try: row_ind, col_ind = min_weight_full_bipartite_matching(sparse) mwfbm_cost = sparse[row_ind, col_ind].sum() except ValueError: mwfbm_raises = True # Ensure that if one method raises, so does the other one. assert lsa_raises == mwfbm_raises if not lsa_raises: assert lsa_cost == mwfbm_cost