""" Tests for line search routines """ from numpy.testing import (assert_, assert_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_warns, suppress_warnings) import scipy.optimize.linesearch as ls from scipy.optimize.linesearch import LineSearchWarning import numpy as np def assert_wolfe(s, phi, derphi, c1=1e-4, c2=0.9, err_msg=""): """ Check that strong Wolfe conditions apply """ phi1 = phi(s) phi0 = phi(0) derphi0 = derphi(0) derphi1 = derphi(s) msg = "s = %s; phi(0) = %s; phi(s) = %s; phi'(0) = %s; phi'(s) = %s; %s" % ( s, phi0, phi1, derphi0, derphi1, err_msg) assert_(phi1 <= phi0 + c1*s*derphi0, "Wolfe 1 failed: " + msg) assert_(abs(derphi1) <= abs(c2*derphi0), "Wolfe 2 failed: " + msg) def assert_armijo(s, phi, c1=1e-4, err_msg=""): """ Check that Armijo condition applies """ phi1 = phi(s) phi0 = phi(0) msg = "s = %s; phi(0) = %s; phi(s) = %s; %s" % (s, phi0, phi1, err_msg) assert_(phi1 <= (1 - c1*s)*phi0, msg) def assert_line_wolfe(x, p, s, f, fprime, **kw): assert_wolfe(s, phi=lambda sp: f(x + p*sp), derphi=lambda sp: np.dot(fprime(x + p*sp), p), **kw) def assert_line_armijo(x, p, s, f, **kw): assert_armijo(s, phi=lambda sp: f(x + p*sp), **kw) def assert_fp_equal(x, y, err_msg="", nulp=50): """Assert two arrays are equal, up to some floating-point rounding error""" try: assert_array_almost_equal_nulp(x, y, nulp) except AssertionError as e: raise AssertionError("%s\n%s" % (e, err_msg)) from e class TestLineSearch: # -- scalar functions; must have dphi(0.) < 0 def _scalar_func_1(self, s): self.fcount += 1 p = -s - s**3 + s**4 dp = -1 - 3*s**2 + 4*s**3 return p, dp def _scalar_func_2(self, s): self.fcount += 1 p = np.exp(-4*s) + s**2 dp = -4*np.exp(-4*s) + 2*s return p, dp def _scalar_func_3(self, s): self.fcount += 1 p = -np.sin(10*s) dp = -10*np.cos(10*s) return p, dp # -- n-d functions def _line_func_1(self, x): self.fcount += 1 f = np.dot(x, x) df = 2*x return f, df def _line_func_2(self, x): self.fcount += 1 f = np.dot(x, np.dot(self.A, x)) + 1 df = np.dot(self.A + self.A.T, x) return f, df # -- def setup_method(self): self.scalar_funcs = [] self.line_funcs = [] self.N = 20 self.fcount = 0 def bind_index(func, idx): # Remember Python's closure semantics! return lambda *a, **kw: func(*a, **kw)[idx] for name in sorted(dir(self)): if name.startswith('_scalar_func_'): value = getattr(self, name) self.scalar_funcs.append( (name, bind_index(value, 0), bind_index(value, 1))) elif name.startswith('_line_func_'): value = getattr(self, name) self.line_funcs.append( (name, bind_index(value, 0), bind_index(value, 1))) np.random.seed(1234) self.A = np.random.randn(self.N, self.N) def scalar_iter(self): for name, phi, derphi in self.scalar_funcs: for old_phi0 in np.random.randn(3): yield name, phi, derphi, old_phi0 def line_iter(self): for name, f, fprime in self.line_funcs: k = 0 while k < 9: x = np.random.randn(self.N) p = np.random.randn(self.N) if np.dot(p, fprime(x)) >= 0: # always pick a descent direction continue k += 1 old_fv = float(np.random.randn()) yield name, f, fprime, x, p, old_fv # -- Generic scalar searches def test_scalar_search_wolfe1(self): c = 0 for name, phi, derphi, old_phi0 in self.scalar_iter(): c += 1 s, phi1, phi0 = ls.scalar_search_wolfe1(phi, derphi, phi(0), old_phi0, derphi(0)) assert_fp_equal(phi0, phi(0), name) assert_fp_equal(phi1, phi(s), name) assert_wolfe(s, phi, derphi, err_msg=name) assert_(c > 3) # check that the iterator really works... def test_scalar_search_wolfe2(self): for name, phi, derphi, old_phi0 in self.scalar_iter(): s, phi1, phi0, derphi1 = ls.scalar_search_wolfe2( phi, derphi, phi(0), old_phi0, derphi(0)) assert_fp_equal(phi0, phi(0), name) assert_fp_equal(phi1, phi(s), name) if derphi1 is not None: assert_fp_equal(derphi1, derphi(s), name) assert_wolfe(s, phi, derphi, err_msg="%s %g" % (name, old_phi0)) def test_scalar_search_wolfe2_with_low_amax(self): def phi(alpha): return (alpha - 5) ** 2 def derphi(alpha): return 2 * (alpha - 5) s, _, _, _ = assert_warns(LineSearchWarning, ls.scalar_search_wolfe2, phi, derphi, amax=0.001) assert_(s is None) def test_scalar_search_wolfe2_regression(self): # Regression test for gh-12157 # This phi has its minimum at alpha=4/3 ~ 1.333. def phi(alpha): if alpha < 1: return - 3*np.pi/2 * (alpha - 1) else: return np.cos(3*np.pi/2 * alpha - np.pi) def derphi(alpha): if alpha < 1: return - 3*np.pi/2 else: return - 3*np.pi/2 * np.sin(3*np.pi/2 * alpha - np.pi) s, _, _, _ = ls.scalar_search_wolfe2(phi, derphi) # Without the fix in gh-13073, the scalar_search_wolfe2 # returned s=2.0 instead. assert_(s < 1.5) def test_scalar_search_armijo(self): for name, phi, derphi, old_phi0 in self.scalar_iter(): s, phi1 = ls.scalar_search_armijo(phi, phi(0), derphi(0)) assert_fp_equal(phi1, phi(s), name) assert_armijo(s, phi, err_msg="%s %g" % (name, old_phi0)) # -- Generic line searches def test_line_search_wolfe1(self): c = 0 smax = 100 for name, f, fprime, x, p, old_f in self.line_iter(): f0 = f(x) g0 = fprime(x) self.fcount = 0 s, fc, gc, fv, ofv, gv = ls.line_search_wolfe1(f, fprime, x, p, g0, f0, old_f, amax=smax) assert_equal(self.fcount, fc+gc) assert_fp_equal(ofv, f(x)) if s is None: continue assert_fp_equal(fv, f(x + s*p)) assert_array_almost_equal(gv, fprime(x + s*p), decimal=14) if s < smax: c += 1 assert_line_wolfe(x, p, s, f, fprime, err_msg=name) assert_(c > 3) # check that the iterator really works... def test_line_search_wolfe2(self): c = 0 smax = 512 for name, f, fprime, x, p, old_f in self.line_iter(): f0 = f(x) g0 = fprime(x) self.fcount = 0 with suppress_warnings() as sup: sup.filter(LineSearchWarning, "The line search algorithm could not find a solution") sup.filter(LineSearchWarning, "The line search algorithm did not converge") s, fc, gc, fv, ofv, gv = ls.line_search_wolfe2(f, fprime, x, p, g0, f0, old_f, amax=smax) assert_equal(self.fcount, fc+gc) assert_fp_equal(ofv, f(x)) assert_fp_equal(fv, f(x + s*p)) if gv is not None: assert_array_almost_equal(gv, fprime(x + s*p), decimal=14) if s < smax: c += 1 assert_line_wolfe(x, p, s, f, fprime, err_msg=name) assert_(c > 3) # check that the iterator really works... def test_line_search_wolfe2_bounds(self): # See gh-7475 # For this f and p, starting at a point on axis 0, the strong Wolfe # condition 2 is met if and only if the step length s satisfies # |x + s| <= c2 * |x| f = lambda x: np.dot(x, x) fp = lambda x: 2 * x p = np.array([1, 0]) # Smallest s satisfying strong Wolfe conditions for these arguments is 30 x = -60 * p c2 = 0.5 s, _, _, _, _, _ = ls.line_search_wolfe2(f, fp, x, p, amax=30, c2=c2) assert_line_wolfe(x, p, s, f, fp) s, _, _, _, _, _ = assert_warns(LineSearchWarning, ls.line_search_wolfe2, f, fp, x, p, amax=29, c2=c2) assert_(s is None) # s=30 will only be tried on the 6th iteration, so this won't converge assert_warns(LineSearchWarning, ls.line_search_wolfe2, f, fp, x, p, c2=c2, maxiter=5) def test_line_search_armijo(self): c = 0 for name, f, fprime, x, p, old_f in self.line_iter(): f0 = f(x) g0 = fprime(x) self.fcount = 0 s, fc, fv = ls.line_search_armijo(f, x, p, g0, f0) c += 1 assert_equal(self.fcount, fc) assert_fp_equal(fv, f(x + s*p)) assert_line_armijo(x, p, s, f, err_msg=name) assert_(c >= 9) # -- More specific tests def test_armijo_terminate_1(self): # Armijo should evaluate the function only once if the trial step # is already suitable count = [0] def phi(s): count[0] += 1 return -s + 0.01*s**2 s, phi1 = ls.scalar_search_armijo(phi, phi(0), -1, alpha0=1) assert_equal(s, 1) assert_equal(count[0], 2) assert_armijo(s, phi) def test_wolfe_terminate(self): # wolfe1 and wolfe2 should also evaluate the function only a few # times if the trial step is already suitable def phi(s): count[0] += 1 return -s + 0.05*s**2 def derphi(s): count[0] += 1 return -1 + 0.05*2*s for func in [ls.scalar_search_wolfe1, ls.scalar_search_wolfe2]: count = [0] r = func(phi, derphi, phi(0), None, derphi(0)) assert_(r[0] is not None, (r, func)) assert_(count[0] <= 2 + 2, (count, func)) assert_wolfe(r[0], phi, derphi, err_msg=str(func))