""" Unit test for Linear Programming """ import sys import numpy as np from numpy.testing import (assert_, assert_allclose, assert_equal, assert_array_less, assert_warns, suppress_warnings) from pytest import raises as assert_raises from scipy.optimize import linprog, OptimizeWarning from scipy.optimize._numdiff import approx_derivative from scipy.sparse.linalg import MatrixRankWarning from scipy.linalg import LinAlgWarning import scipy.sparse import pytest has_umfpack = True try: from scikits.umfpack import UmfpackWarning except ImportError: has_umfpack = False has_cholmod = True try: import sksparse from sksparse.cholmod import cholesky as cholmod except ImportError: has_cholmod = False def _assert_iteration_limit_reached(res, maxiter): assert_(not res.success, "Incorrectly reported success") assert_(res.success < maxiter, "Incorrectly reported number of iterations") assert_equal(res.status, 1, "Failed to report iteration limit reached") def _assert_infeasible(res): # res: linprog result object assert_(not res.success, "incorrectly reported success") assert_equal(res.status, 2, "failed to report infeasible status") def _assert_unbounded(res): # res: linprog result object assert_(not res.success, "incorrectly reported success") assert_equal(res.status, 3, "failed to report unbounded status") def _assert_unable_to_find_basic_feasible_sol(res): # res: linprog result object # The status may be either 2 or 4 depending on why the feasible solution # could not be found. If the undelying problem is expected to not have a # feasible solution, _assert_infeasible should be used. assert_(not res.success, "incorrectly reported success") assert_(res.status in (2, 4), "failed to report optimization failure") def _assert_success(res, desired_fun=None, desired_x=None, rtol=1e-8, atol=1e-8): # res: linprog result object # desired_fun: desired objective function value or None # desired_x: desired solution or None if not res.success: msg = "linprog status {0}, message: {1}".format(res.status, res.message) raise AssertionError(msg) assert_equal(res.status, 0) if desired_fun is not None: assert_allclose(res.fun, desired_fun, err_msg="converged to an unexpected objective value", rtol=rtol, atol=atol) if desired_x is not None: assert_allclose(res.x, desired_x, err_msg="converged to an unexpected solution", rtol=rtol, atol=atol) def magic_square(n): """ Generates a linear program for which integer solutions represent an n x n magic square; binary decision variables represent the presence (or absence) of an integer 1 to n^2 in each position of the square. """ np.random.seed(0) M = n * (n**2 + 1) / 2 numbers = np.arange(n**4) // n**2 + 1 numbers = numbers.reshape(n**2, n, n) zeros = np.zeros((n**2, n, n)) A_list = [] b_list = [] # Rule 1: use every number exactly once for i in range(n**2): A_row = zeros.copy() A_row[i, :, :] = 1 A_list.append(A_row.flatten()) b_list.append(1) # Rule 2: Only one number per square for i in range(n): for j in range(n): A_row = zeros.copy() A_row[:, i, j] = 1 A_list.append(A_row.flatten()) b_list.append(1) # Rule 3: sum of rows is M for i in range(n): A_row = zeros.copy() A_row[:, i, :] = numbers[:, i, :] A_list.append(A_row.flatten()) b_list.append(M) # Rule 4: sum of columns is M for i in range(n): A_row = zeros.copy() A_row[:, :, i] = numbers[:, :, i] A_list.append(A_row.flatten()) b_list.append(M) # Rule 5: sum of diagonals is M A_row = zeros.copy() A_row[:, range(n), range(n)] = numbers[:, range(n), range(n)] A_list.append(A_row.flatten()) b_list.append(M) A_row = zeros.copy() A_row[:, range(n), range(-1, -n - 1, -1)] = \ numbers[:, range(n), range(-1, -n - 1, -1)] A_list.append(A_row.flatten()) b_list.append(M) A = np.array(np.vstack(A_list), dtype=float) b = np.array(b_list, dtype=float) c = np.random.rand(A.shape[1]) return A, b, c, numbers def lpgen_2d(m, n): """ -> A b c LP test: m*n vars, m+n constraints row sums == n/m, col sums == 1 https://gist.github.com/denis-bz/8647461 """ np.random.seed(0) c = - np.random.exponential(size=(m, n)) Arow = np.zeros((m, m * n)) brow = np.zeros(m) for j in range(m): j1 = j + 1 Arow[j, j * n:j1 * n] = 1 brow[j] = n / m Acol = np.zeros((n, m * n)) bcol = np.zeros(n) for j in range(n): j1 = j + 1 Acol[j, j::n] = 1 bcol[j] = 1 A = np.vstack((Arow, Acol)) b = np.hstack((brow, bcol)) return A, b, c.ravel() def very_random_gen(seed=0): np.random.seed(seed) m_eq, m_ub, n = 10, 20, 50 c = np.random.rand(n)-0.5 A_ub = np.random.rand(m_ub, n)-0.5 b_ub = np.random.rand(m_ub)-0.5 A_eq = np.random.rand(m_eq, n)-0.5 b_eq = np.random.rand(m_eq)-0.5 lb = -np.random.rand(n) ub = np.random.rand(n) lb[lb < -np.random.rand()] = -np.inf ub[ub > np.random.rand()] = np.inf bounds = np.vstack((lb, ub)).T return c, A_ub, b_ub, A_eq, b_eq, bounds def nontrivial_problem(): c = [-1, 8, 4, -6] A_ub = [[-7, -7, 6, 9], [1, -1, -3, 0], [10, -10, -7, 7], [6, -1, 3, 4]] b_ub = [-3, 6, -6, 6] A_eq = [[-10, 1, 1, -8]] b_eq = [-4] x_star = [101 / 1391, 1462 / 1391, 0, 752 / 1391] f_star = 7083 / 1391 return c, A_ub, b_ub, A_eq, b_eq, x_star, f_star def l1_regression_prob(seed=0, m=8, d=9, n=100): ''' Training data is {(x0, y0), (x1, y2), ..., (xn-1, yn-1)} x in R^d y in R n: number of training samples d: dimension of x, i.e. x in R^d phi: feature map R^d -> R^m m: dimension of feature space ''' np.random.seed(seed) phi = np.random.normal(0, 1, size=(m, d)) # random feature mapping w_true = np.random.randn(m) x = np.random.normal(0, 1, size=(d, n)) # features y = w_true @ (phi @ x) + np.random.normal(0, 1e-5, size=n) # measurements # construct the problem c = np.ones(m+n) c[:m] = 0 A_ub = scipy.sparse.lil_matrix((2*n, n+m)) idx = 0 for ii in range(n): A_ub[idx, :m] = phi @ x[:, ii] A_ub[idx, m+ii] = -1 A_ub[idx+1, :m] = -1*phi @ x[:, ii] A_ub[idx+1, m+ii] = -1 idx += 2 A_ub = A_ub.tocsc() b_ub = np.zeros(2*n) b_ub[0::2] = y b_ub[1::2] = -y bnds = [(None, None)]*m + [(0, None)]*n return c, A_ub, b_ub, bnds def generic_callback_test(self): # Check that callback is as advertised last_cb = {} def cb(res): message = res.pop('message') complete = res.pop('complete') assert_(res.pop('phase') in (1, 2)) assert_(res.pop('status') in range(4)) assert_(isinstance(res.pop('nit'), int)) assert_(isinstance(complete, bool)) assert_(isinstance(message, str)) last_cb['x'] = res['x'] last_cb['fun'] = res['fun'] last_cb['slack'] = res['slack'] last_cb['con'] = res['con'] c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] res = linprog(c, A_ub=A_ub, b_ub=b_ub, callback=cb, method=self.method) _assert_success(res, desired_fun=-18.0, desired_x=[2, 6]) assert_allclose(last_cb['fun'], res['fun']) assert_allclose(last_cb['x'], res['x']) assert_allclose(last_cb['con'], res['con']) assert_allclose(last_cb['slack'], res['slack']) def test_unknown_solvers_and_options(): c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] assert_raises(ValueError, linprog, c, A_ub=A_ub, b_ub=b_ub, method='ekki-ekki-ekki') assert_raises(ValueError, linprog, c, A_ub=A_ub, b_ub=b_ub, method='highs-ekki') assert_raises(ValueError, linprog, c, A_ub=A_ub, b_ub=b_ub, options={"rr_method": 'ekki-ekki-ekki'}) def test_choose_solver(): # 'highs' chooses 'dual' c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] res = linprog(c, A_ub, b_ub, method='highs') _assert_success(res, desired_fun=-18.0, desired_x=[2, 6]) A_ub = None b_ub = None A_eq = None b_eq = None bounds = None ################ # Common Tests # ################ class LinprogCommonTests: """ Base class for `linprog` tests. Generally, each test will be performed once for every derived class of LinprogCommonTests, each of which will typically change self.options and/or self.method. Effectively, these tests are run for many combination of method (simplex, revised simplex, and interior point) and options (such as pivoting rule or sparse treatment). """ ################## # Targeted Tests # ################## def test_callback(self): generic_callback_test(self) def test_disp(self): # test that display option does not break anything. A, b, c = lpgen_2d(20, 20) res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"disp": True}) _assert_success(res, desired_fun=-64.049494229) def test_docstring_example(self): # Example from linprog docstring. c = [-1, 4] A = [[-3, 1], [1, 2]] b = [6, 4] x0_bounds = (None, None) x1_bounds = (-3, None) res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds), options=self.options, method=self.method) _assert_success(res, desired_fun=-22) def test_type_error(self): # (presumably) checks that linprog recognizes type errors # This is tested more carefully in test__linprog_clean_inputs.py c = [1] A_eq = [[1]] b_eq = "hello" assert_raises(TypeError, linprog, c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) def test_aliasing_b_ub(self): # (presumably) checks that linprog does not modify b_ub # This is tested more carefully in test__linprog_clean_inputs.py c = np.array([1.0]) A_ub = np.array([[1.0]]) b_ub_orig = np.array([3.0]) b_ub = b_ub_orig.copy() bounds = (-4.0, np.inf) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-4, desired_x=[-4]) assert_allclose(b_ub_orig, b_ub) def test_aliasing_b_eq(self): # (presumably) checks that linprog does not modify b_eq # This is tested more carefully in test__linprog_clean_inputs.py c = np.array([1.0]) A_eq = np.array([[1.0]]) b_eq_orig = np.array([3.0]) b_eq = b_eq_orig.copy() bounds = (-4.0, np.inf) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3, desired_x=[3]) assert_allclose(b_eq_orig, b_eq) def test_non_ndarray_args(self): # (presumably) checks that linprog accepts list in place of arrays # This is tested more carefully in test__linprog_clean_inputs.py c = [1.0] A_ub = [[1.0]] b_ub = [3.0] A_eq = [[1.0]] b_eq = [2.0] bounds = (-1.0, 10.0) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=2, desired_x=[2]) def test_unknown_options(self): c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, options={}): linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=options) o = {key: self.options[key] for key in self.options} o['spam'] = 42 assert_warns(OptimizeWarning, f, c, A_ub=A_ub, b_ub=b_ub, options=o) def test_invalid_inputs(self): def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None): linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) # Test ill-formatted bounds assert_raises(ValueError, f, [1, 2, 3], bounds=[(1, 2), (3, 4)]) assert_raises(ValueError, f, [1, 2, 3], bounds=[(1, 2), (3, 4), (3, 4, 5)]) assert_raises(ValueError, f, [1, 2, 3], bounds=[(1, -2), (1, 2)]) # Test other invalid inputs assert_raises(ValueError, f, [1, 2], A_ub=[[1, 2]], b_ub=[1, 2]) assert_raises(ValueError, f, [1, 2], A_ub=[[1]], b_ub=[1]) assert_raises(ValueError, f, [1, 2], A_eq=[[1, 2]], b_eq=[1, 2]) assert_raises(ValueError, f, [1, 2], A_eq=[[1]], b_eq=[1]) assert_raises(ValueError, f, [1, 2], A_eq=[1], b_eq=1) # this last check doesn't make sense for sparse presolve if ("_sparse_presolve" in self.options and self.options["_sparse_presolve"]): return # there aren't 3-D sparse matrices assert_raises(ValueError, f, [1, 2], A_ub=np.zeros((1, 1, 3)), b_eq=1) def test_sparse_constraints(self): # gh-13559: improve error message for sparse inputs when unsupported def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None): linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) np.random.seed(0) m = 100 n = 150 A_eq = scipy.sparse.rand(m, n, 0.5) x_valid = np.random.randn((n)) c = np.random.randn((n)) ub = x_valid + np.random.rand((n)) lb = x_valid - np.random.rand((n)) bounds = np.column_stack((lb, ub)) b_eq = A_eq * x_valid if self.method in {'simplex', 'revised simplex'}: # simplex and revised simplex should raise error with assert_raises(ValueError, match=f"Method '{self.method}' " "does not support sparse constraint matrices."): linprog(c=c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) else: # other methods should succeed options = {**self.options} if self.method in {'interior-point'}: options['sparse'] = True res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=options) assert res.success def test_maxiter(self): # test iteration limit w/ Enzo example c = [4, 8, 3, 0, 0, 0] A = [ [2, 5, 3, -1, 0, 0], [3, 2.5, 8, 0, -1, 0], [8, 10, 4, 0, 0, -1]] b = [185, 155, 600] np.random.seed(0) maxiter = 3 res = linprog(c, A_eq=A, b_eq=b, method=self.method, options={"maxiter": maxiter}) _assert_iteration_limit_reached(res, maxiter) assert_equal(res.nit, maxiter) def test_bounds_fixed(self): # Test fixed bounds (upper equal to lower) # If presolve option True, test if solution found in presolve (i.e. # number of iterations is 0). do_presolve = self.options.get('presolve', True) res = linprog([1], bounds=(1, 1), method=self.method, options=self.options) _assert_success(res, 1, 1) if do_presolve: assert_equal(res.nit, 0) res = linprog([1, 2, 3], bounds=[(5, 5), (-1, -1), (3, 3)], method=self.method, options=self.options) _assert_success(res, 12, [5, -1, 3]) if do_presolve: assert_equal(res.nit, 0) res = linprog([1, 1], bounds=[(1, 1), (1, 3)], method=self.method, options=self.options) _assert_success(res, 2, [1, 1]) if do_presolve: assert_equal(res.nit, 0) res = linprog([1, 1, 2], A_eq=[[1, 0, 0], [0, 1, 0]], b_eq=[1, 7], bounds=[(-5, 5), (0, 10), (3.5, 3.5)], method=self.method, options=self.options) _assert_success(res, 15, [1, 7, 3.5]) if do_presolve: assert_equal(res.nit, 0) def test_bounds_infeasible(self): # Test ill-valued bounds (upper less than lower) # If presolve option True, test if solution found in presolve (i.e. # number of iterations is 0). do_presolve = self.options.get('presolve', True) res = linprog([1], bounds=(1, -2), method=self.method, options=self.options) _assert_infeasible(res) if do_presolve: assert_equal(res.nit, 0) res = linprog([1], bounds=[(1, -2)], method=self.method, options=self.options) _assert_infeasible(res) if do_presolve: assert_equal(res.nit, 0) res = linprog([1, 2, 3], bounds=[(5, 0), (1, 2), (3, 4)], method=self.method, options=self.options) _assert_infeasible(res) if do_presolve: assert_equal(res.nit, 0) def test_bounds_infeasible_2(self): # Test ill-valued bounds (lower inf, upper -inf) # If presolve option True, test if solution found in presolve (i.e. # number of iterations is 0). # For the simplex method, the cases do not result in an # infeasible status, but in a RuntimeWarning. This is a # consequence of having _presolve() take care of feasibility # checks. See issue gh-11618. do_presolve = self.options.get('presolve', True) simplex_without_presolve = not do_presolve and self.method == 'simplex' c = [1, 2, 3] bounds_1 = [(1, 2), (np.inf, np.inf), (3, 4)] bounds_2 = [(1, 2), (-np.inf, -np.inf), (3, 4)] if simplex_without_presolve: def g(c, bounds): res = linprog(c, bounds=bounds, method=self.method, options=self.options) return res with pytest.warns(RuntimeWarning): with pytest.raises(IndexError): g(c, bounds=bounds_1) with pytest.warns(RuntimeWarning): with pytest.raises(IndexError): g(c, bounds=bounds_2) else: res = linprog(c=c, bounds=bounds_1, method=self.method, options=self.options) _assert_infeasible(res) if do_presolve: assert_equal(res.nit, 0) res = linprog(c=c, bounds=bounds_2, method=self.method, options=self.options) _assert_infeasible(res) if do_presolve: assert_equal(res.nit, 0) def test_empty_constraint_1(self): c = [-1, -2] res = linprog(c, method=self.method, options=self.options) _assert_unbounded(res) def test_empty_constraint_2(self): c = [-1, 1, -1, 1] bounds = [(0, np.inf), (-np.inf, 0), (-1, 1), (-1, 1)] res = linprog(c, bounds=bounds, method=self.method, options=self.options) _assert_unbounded(res) # Unboundedness detected in presolve requires no iterations if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_empty_constraint_3(self): c = [1, -1, 1, -1] bounds = [(0, np.inf), (-np.inf, 0), (-1, 1), (-1, 1)] res = linprog(c, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[0, 0, -1, 1], desired_fun=-2) def test_inequality_constraints(self): # Minimize linear function subject to linear inequality constraints. # http://www.dam.brown.edu/people/huiwang/classes/am121/Archive/simplex_121_c.pdf c = np.array([3, 2]) * -1 # maximize A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-18, desired_x=[2, 6]) def test_inequality_constraints2(self): # Minimize linear function subject to linear inequality constraints. # http://www.statslab.cam.ac.uk/~ff271/teaching/opt/notes/notes8.pdf # (dead link) c = [6, 3] A_ub = [[0, 3], [-1, -1], [-2, 1]] b_ub = [2, -1, -1] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=5, desired_x=[2 / 3, 1 / 3]) def test_bounds_simple(self): c = [1, 2] bounds = (1, 2) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[1, 1]) bounds = [(1, 2), (1, 2)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[1, 1]) def test_bounded_below_only_1(self): c = np.array([1.0]) A_eq = np.array([[1.0]]) b_eq = np.array([3.0]) bounds = (1.0, None) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3, desired_x=[3]) def test_bounded_below_only_2(self): c = np.ones(3) A_eq = np.eye(3) b_eq = np.array([1, 2, 3]) bounds = (0.5, np.inf) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=b_eq, desired_fun=np.sum(b_eq)) def test_bounded_above_only_1(self): c = np.array([1.0]) A_eq = np.array([[1.0]]) b_eq = np.array([3.0]) bounds = (None, 10.0) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3, desired_x=[3]) def test_bounded_above_only_2(self): c = np.ones(3) A_eq = np.eye(3) b_eq = np.array([1, 2, 3]) bounds = (-np.inf, 4) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=b_eq, desired_fun=np.sum(b_eq)) def test_bounds_infinity(self): c = np.ones(3) A_eq = np.eye(3) b_eq = np.array([1, 2, 3]) bounds = (-np.inf, np.inf) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=b_eq, desired_fun=np.sum(b_eq)) def test_bounds_mixed(self): # Problem has one unbounded variable and # another with a negative lower bound. c = np.array([-1, 4]) * -1 # maximize A_ub = np.array([[-3, 1], [1, 2]], dtype=np.float64) b_ub = [6, 4] x0_bounds = (-np.inf, np.inf) x1_bounds = (-3, np.inf) bounds = (x0_bounds, x1_bounds) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-80 / 7, desired_x=[-8 / 7, 18 / 7]) def test_bounds_equal_but_infeasible(self): c = [-4, 1] A_ub = [[7, -2], [0, 1], [2, -2]] b_ub = [14, 0, 3] bounds = [(2, 2), (0, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) def test_bounds_equal_but_infeasible2(self): c = [-4, 1] A_eq = [[7, -2], [0, 1], [2, -2]] b_eq = [14, 0, 3] bounds = [(2, 2), (0, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) def test_bounds_equal_no_presolve(self): # There was a bug when a lower and upper bound were equal but # presolve was not on to eliminate the variable. The bound # was being converted to an equality constraint, but the bound # was not eliminated, leading to issues in postprocessing. c = [1, 2] A_ub = [[1, 2], [1.1, 2.2]] b_ub = [4, 8] bounds = [(1, 2), (2, 2)] o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) _assert_infeasible(res) def test_zero_column_1(self): m, n = 3, 4 np.random.seed(0) c = np.random.rand(n) c[1] = 1 A_eq = np.random.rand(m, n) A_eq[:, 1] = 0 b_eq = np.random.rand(m) A_ub = [[1, 0, 1, 1]] b_ub = 3 bounds = [(-10, 10), (-10, 10), (-10, None), (None, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-9.7087836730413404) def test_zero_column_2(self): np.random.seed(0) m, n = 2, 4 c = np.random.rand(n) c[1] = -1 A_eq = np.random.rand(m, n) A_eq[:, 1] = 0 b_eq = np.random.rand(m) A_ub = np.random.rand(m, n) A_ub[:, 1] = 0 b_ub = np.random.rand(m) bounds = (None, None) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_unbounded(res) # Unboundedness detected in presolve if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_zero_row_1(self): c = [1, 2, 3] A_eq = [[0, 0, 0], [1, 1, 1], [0, 0, 0]] b_eq = [0, 3, 0] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3) def test_zero_row_2(self): A_ub = [[0, 0, 0], [1, 1, 1], [0, 0, 0]] b_ub = [0, 3, 0] c = [1, 2, 3] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=0) def test_zero_row_3(self): m, n = 2, 4 c = np.random.rand(n) A_eq = np.random.rand(m, n) A_eq[0, :] = 0 b_eq = np.random.rand(m) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) # Infeasibility detected in presolve if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_zero_row_4(self): m, n = 2, 4 c = np.random.rand(n) A_ub = np.random.rand(m, n) A_ub[0, :] = 0 b_ub = -np.random.rand(m) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) # Infeasibility detected in presolve if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_singleton_row_eq_1(self): c = [1, 1, 1, 2] A_eq = [[1, 0, 0, 0], [0, 2, 0, 0], [1, 0, 0, 0], [1, 1, 1, 1]] b_eq = [1, 2, 2, 4] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) # Infeasibility detected in presolve if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_singleton_row_eq_2(self): c = [1, 1, 1, 2] A_eq = [[1, 0, 0, 0], [0, 2, 0, 0], [1, 0, 0, 0], [1, 1, 1, 1]] b_eq = [1, 2, 1, 4] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=4) def test_singleton_row_ub_1(self): c = [1, 1, 1, 2] A_ub = [[1, 0, 0, 0], [0, 2, 0, 0], [-1, 0, 0, 0], [1, 1, 1, 1]] b_ub = [1, 2, -2, 4] bounds = [(None, None), (0, None), (0, None), (0, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) # Infeasibility detected in presolve if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_singleton_row_ub_2(self): c = [1, 1, 1, 2] A_ub = [[1, 0, 0, 0], [0, 2, 0, 0], [-1, 0, 0, 0], [1, 1, 1, 1]] b_ub = [1, 2, -0.5, 4] bounds = [(None, None), (0, None), (0, None), (0, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=0.5) def test_infeasible(self): # Test linprog response to an infeasible problem c = [-1, -1] A_ub = [[1, 0], [0, 1], [-1, -1]] b_ub = [2, 2, -5] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) def test_infeasible_inequality_bounds(self): c = [1] A_ub = [[2]] b_ub = 4 bounds = (5, 6) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) # Infeasibility detected in presolve if self.options.get('presolve', True): assert_equal(res.nit, 0) def test_unbounded(self): # Test linprog response to an unbounded problem c = np.array([1, 1]) * -1 # maximize A_ub = [[-1, 1], [-1, -1]] b_ub = [-1, -2] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_unbounded(res) def test_unbounded_below_no_presolve_corrected(self): c = [1] bounds = [(None, 1)] o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c=c, bounds=bounds, method=self.method, options=o) if self.method == "revised simplex": # Revised simplex has a special pathway for no constraints. assert_equal(res.status, 5) else: _assert_unbounded(res) def test_unbounded_no_nontrivial_constraints_1(self): """ Test whether presolve pathway for detecting unboundedness after constraint elimination is working. """ c = np.array([0, 0, 0, 1, -1, -1]) A_ub = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1]]) b_ub = np.array([2, -2, 0]) bounds = [(None, None), (None, None), (None, None), (-1, 1), (-1, 1), (0, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_unbounded(res) if not self.method.lower().startswith("highs"): assert_equal(res.x[-1], np.inf) assert_equal(res.message[:36], "The problem is (trivially) unbounded") def test_unbounded_no_nontrivial_constraints_2(self): """ Test whether presolve pathway for detecting unboundedness after constraint elimination is working. """ c = np.array([0, 0, 0, 1, -1, 1]) A_ub = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]]) b_ub = np.array([2, -2, 0]) bounds = [(None, None), (None, None), (None, None), (-1, 1), (-1, 1), (None, 0)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_unbounded(res) if not self.method.lower().startswith("highs"): assert_equal(res.x[-1], -np.inf) assert_equal(res.message[:36], "The problem is (trivially) unbounded") def test_cyclic_recovery(self): # Test linprogs recovery from cycling using the Klee-Minty problem # Klee-Minty https://www.math.ubc.ca/~israel/m340/kleemin3.pdf c = np.array([100, 10, 1]) * -1 # maximize A_ub = [[1, 0, 0], [20, 1, 0], [200, 20, 1]] b_ub = [1, 100, 10000] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[0, 0, 10000], atol=5e-6, rtol=1e-7) def test_cyclic_bland(self): # Test the effect of Bland's rule on a cycling problem c = np.array([-10, 57, 9, 24.]) A_ub = np.array([[0.5, -5.5, -2.5, 9], [0.5, -1.5, -0.5, 1], [1, 0, 0, 0]]) b_ub = [0, 0, 1] # copy the existing options dictionary but change maxiter maxiter = 100 o = {key: val for key, val in self.options.items()} o['maxiter'] = maxiter res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) if self.method == 'simplex' and not self.options.get('bland'): # simplex cycles without Bland's rule _assert_iteration_limit_reached(res, o['maxiter']) else: # other methods, including simplex with Bland's rule, succeed _assert_success(res, desired_x=[1, 0, 1, 0]) # note that revised simplex skips this test because it may or may not # cycle depending on the initial basis def test_remove_redundancy_infeasibility(self): # mostly a test of redundancy removal, which is carefully tested in # test__remove_redundancy.py m, n = 10, 10 c = np.random.rand(n) A_eq = np.random.rand(m, n) b_eq = np.random.rand(m) A_eq[-1, :] = 2 * A_eq[-2, :] b_eq[-1] *= -1 with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) ################# # General Tests # ################# def test_nontrivial_problem(self): # Problem involves all constraint types, # negative resource limits, and rounding issues. c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=f_star, desired_x=x_star) def test_lpgen_problem(self): # Test linprog with a rather large problem (400 variables, # 40 constraints) generated by https://gist.github.com/denis-bz/8647461 A_ub, b_ub, c = lpgen_2d(20, 20) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "Solving system with option 'sym_pos'") sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-64.049494229) def test_network_flow(self): # A network flow problem with supply and demand at nodes # and with costs along directed edges. # https://www.princeton.edu/~rvdb/542/lectures/lec10.pdf c = [2, 4, 9, 11, 4, 3, 8, 7, 0, 15, 16, 18] n, p = -1, 1 A_eq = [ [n, n, p, 0, p, 0, 0, 0, 0, p, 0, 0], [p, 0, 0, p, 0, p, 0, 0, 0, 0, 0, 0], [0, 0, n, n, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, p, p, 0, 0, p, 0], [0, 0, 0, 0, n, n, n, 0, p, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, n, n, 0, 0, p], [0, 0, 0, 0, 0, 0, 0, 0, 0, n, n, n]] b_eq = [0, 19, -16, 33, 0, 0, -36] with suppress_warnings() as sup: sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=755, atol=1e-6, rtol=1e-7) def test_network_flow_limited_capacity(self): # A network flow problem with supply and demand at nodes # and with costs and capacities along directed edges. # http://blog.sommer-forst.de/2013/04/10/ c = [2, 2, 1, 3, 1] bounds = [ [0, 4], [0, 2], [0, 2], [0, 3], [0, 5]] n, p = -1, 1 A_eq = [ [n, n, 0, 0, 0], [p, 0, n, n, 0], [0, p, p, 0, n], [0, 0, 0, p, p]] b_eq = [-4, 0, 0, 4] with suppress_warnings() as sup: # this is an UmfpackWarning but I had trouble importing it if has_umfpack: sup.filter(UmfpackWarning) sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...") sup.filter(OptimizeWarning, "A_eq does not appear...") sup.filter(OptimizeWarning, "Solving system with option...") sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=14) def test_simplex_algorithm_wikipedia_example(self): # https://en.wikipedia.org/wiki/Simplex_algorithm#Example c = [-2, -3, -4] A_ub = [ [3, 2, 1], [2, 5, 3]] b_ub = [10, 15] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-20) def test_enzo_example(self): # https://github.com/scipy/scipy/issues/1779 lp2.py # # Translated from Octave code at: # http://www.ecs.shimane-u.ac.jp/~kyoshida/lpeng.htm # and placed under MIT licence by Enzo Michelangeli # with permission explicitly granted by the original author, # Prof. Kazunobu Yoshida c = [4, 8, 3, 0, 0, 0] A_eq = [ [2, 5, 3, -1, 0, 0], [3, 2.5, 8, 0, -1, 0], [8, 10, 4, 0, 0, -1]] b_eq = [185, 155, 600] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=317.5, desired_x=[66.25, 0, 17.5, 0, 183.75, 0], atol=6e-6, rtol=1e-7) def test_enzo_example_b(self): # rescued from https://github.com/scipy/scipy/pull/218 c = [2.8, 6.3, 10.8, -2.8, -6.3, -10.8] A_eq = [[-1, -1, -1, 0, 0, 0], [0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1]] b_eq = [-0.5, 0.4, 0.3, 0.3, 0.3] with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-1.77, desired_x=[0.3, 0.2, 0.0, 0.0, 0.1, 0.3]) def test_enzo_example_c_with_degeneracy(self): # rescued from https://github.com/scipy/scipy/pull/218 m = 20 c = -np.ones(m) tmp = 2 * np.pi * np.arange(1, m + 1) / (m + 1) A_eq = np.vstack((np.cos(tmp) - 1, np.sin(tmp))) b_eq = [0, 0] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=0, desired_x=np.zeros(m)) def test_enzo_example_c_with_unboundedness(self): # rescued from https://github.com/scipy/scipy/pull/218 m = 50 c = -np.ones(m) tmp = 2 * np.pi * np.arange(m) / (m + 1) A_eq = np.vstack((np.cos(tmp) - 1, np.sin(tmp))) b_eq = [0, 0] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_unbounded(res) def test_enzo_example_c_with_infeasibility(self): # rescued from https://github.com/scipy/scipy/pull/218 m = 50 c = -np.ones(m) tmp = 2 * np.pi * np.arange(m) / (m + 1) A_eq = np.vstack((np.cos(tmp) - 1, np.sin(tmp))) b_eq = [1, 1] o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) _assert_infeasible(res) def test_basic_artificial_vars(self): # Problem is chosen to test two phase simplex methods when at the end # of phase 1 some artificial variables remain in the basis. # Also, for `method='simplex'`, the row in the tableau corresponding # with the artificial variables is not all zero. c = np.array([-0.1, -0.07, 0.004, 0.004, 0.004, 0.004]) A_ub = np.array([[1.0, 0, 0, 0, 0, 0], [-1.0, 0, 0, 0, 0, 0], [0, -1.0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0], [1.0, 1.0, 0, 0, 0, 0]]) b_ub = np.array([3.0, 3.0, 3.0, 3.0, 20.0]) A_eq = np.array([[1.0, 0, -1, 1, -1, 1], [0, -1.0, -1, 1, -1, 1]]) b_eq = np.array([0, 0]) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=0, desired_x=np.zeros_like(c), atol=2e-6) def test_optimize_result(self): # check all fields in OptimizeResult c, A_ub, b_ub, A_eq, b_eq, bounds = very_random_gen(0) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) assert_(res.success) assert_(res.nit) assert_(not res.status) assert_(res.message == "Optimization terminated successfully.") assert_allclose(c @ res.x, res.fun) assert_allclose(b_eq - A_eq @ res.x, res.con, atol=1e-11) assert_allclose(b_ub - A_ub @ res.x, res.slack, atol=1e-11) ################# # Bug Fix Tests # ################# def test_bug_5400(self): # https://github.com/scipy/scipy/issues/5400 bounds = [ (0, None), (0, 100), (0, 100), (0, 100), (0, 100), (0, 100), (0, 100), (0, 900), (0, 900), (0, 900), (0, 900), (0, 900), (0, 900), (0, None), (0, None), (0, None), (0, None), (0, None), (0, None)] f = 1 / 9 g = -1e4 h = -3.1 A_ub = np.array([ [1, -2.99, 0, 0, -3, 0, 0, 0, -1, -1, 0, -1, -1, 1, 1, 0, 0, 0, 0], [1, 0, -2.9, h, 0, -3, 0, -1, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, 0], [1, 0, 0, h, 0, 0, -3, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 1, 1], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [0, 1.99, -1, -1, 0, 0, 0, -1, f, f, 0, 0, 0, g, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, -1, -1, 0, 0, 0, -1, f, f, 0, g, 0, 0, 0, 0], [0, -1, 1.9, 2.1, 0, 0, 0, f, -1, -1, 0, 0, 0, 0, 0, g, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0, 0, f, -1, f, 0, 0, 0, g, 0, 0], [0, -1, -1, 2.1, 0, 0, 0, f, f, -1, 0, 0, 0, 0, 0, 0, 0, g, 0], [0, 0, 0, 0, -1, -1, 2, 0, 0, 0, f, f, -1, 0, 0, 0, 0, 0, g]]) b_ub = np.array([ 0.0, 0, 0, 100, 100, 100, 100, 100, 100, 900, 900, 900, 900, 900, 900, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) c = np.array([-1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "Solving system with option 'sym_pos'") sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-106.63507541835018) def test_bug_6139(self): # linprog(method='simplex') fails to find a basic feasible solution # if phase 1 pseudo-objective function is outside the provided tol. # https://github.com/scipy/scipy/issues/6139 # Note: This is not strictly a bug as the default tolerance determines # if a result is "close enough" to zero and should not be expected # to work for all cases. c = np.array([1, 1, 1]) A_eq = np.array([[1., 0., 0.], [-1000., 0., - 1000.]]) b_eq = np.array([5.00000000e+00, -1.00000000e+04]) A_ub = -np.array([[0., 1000000., 1010000.]]) b_ub = -np.array([10000000.]) bounds = (None, None) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=14.95, desired_x=np.array([5, 4.95, 5])) def test_bug_6690(self): # linprog simplex used to violate bound constraint despite reporting # success. # https://github.com/scipy/scipy/issues/6690 A_eq = np.array([[0, 0, 0, 0.93, 0, 0.65, 0, 0, 0.83, 0]]) b_eq = np.array([0.9626]) A_ub = np.array([ [0, 0, 0, 1.18, 0, 0, 0, -0.2, 0, -0.22], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0.43, 0, 0, 0, 0, 0, 0], [0, -1.22, -0.25, 0, 0, 0, -2.06, 0, 0, 1.37], [0, 0, 0, 0, 0, 0, 0, -0.25, 0, 0] ]) b_ub = np.array([0.615, 0, 0.172, -0.869, -0.022]) bounds = np.array([ [-0.84, -0.97, 0.34, 0.4, -0.33, -0.74, 0.47, 0.09, -1.45, -0.73], [0.37, 0.02, 2.86, 0.86, 1.18, 0.5, 1.76, 0.17, 0.32, -0.15] ]).T c = np.array([ -1.64, 0.7, 1.8, -1.06, -1.16, 0.26, 2.13, 1.53, 0.66, 0.28 ]) with suppress_warnings() as sup: if has_umfpack: sup.filter(UmfpackWarning) sup.filter(OptimizeWarning, "Solving system with option 'cholesky'") sup.filter(OptimizeWarning, "Solving system with option 'sym_pos'") sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) desired_fun = -1.19099999999 desired_x = np.array([0.3700, -0.9700, 0.3400, 0.4000, 1.1800, 0.5000, 0.4700, 0.0900, 0.3200, -0.7300]) _assert_success(res, desired_fun=desired_fun, desired_x=desired_x) # Add small tol value to ensure arrays are less than or equal. atol = 1e-6 assert_array_less(bounds[:, 0] - atol, res.x) assert_array_less(res.x, bounds[:, 1] + atol) def test_bug_7044(self): # linprog simplex failed to "identify correct constraints" (?) # leading to a non-optimal solution if A is rank-deficient. # https://github.com/scipy/scipy/issues/7044 A_eq, b_eq, c, N = magic_square(3) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) desired_fun = 1.730550597 _assert_success(res, desired_fun=desired_fun) assert_allclose(A_eq.dot(res.x), b_eq) assert_array_less(np.zeros(res.x.size) - 1e-5, res.x) def test_bug_7237(self): # https://github.com/scipy/scipy/issues/7237 # linprog simplex "explodes" when the pivot value is very # close to zero. c = np.array([-1, 0, 0, 0, 0, 0, 0, 0, 0]) A_ub = np.array([ [1., -724., 911., -551., -555., -896., 478., -80., -293.], [1., 566., 42., 937., 233., 883., 392., -909., 57.], [1., -208., -894., 539., 321., 532., -924., 942., 55.], [1., 857., -859., 83., 462., -265., -971., 826., 482.], [1., 314., -424., 245., -424., 194., -443., -104., -429.], [1., 540., 679., 361., 149., -827., 876., 633., 302.], [0., -1., -0., -0., -0., -0., -0., -0., -0.], [0., -0., -1., -0., -0., -0., -0., -0., -0.], [0., -0., -0., -1., -0., -0., -0., -0., -0.], [0., -0., -0., -0., -1., -0., -0., -0., -0.], [0., -0., -0., -0., -0., -1., -0., -0., -0.], [0., -0., -0., -0., -0., -0., -1., -0., -0.], [0., -0., -0., -0., -0., -0., -0., -1., -0.], [0., -0., -0., -0., -0., -0., -0., -0., -1.], [0., 1., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1.] ]) b_ub = np.array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.]) A_eq = np.array([[0., 1., 1., 1., 1., 1., 1., 1., 1.]]) b_eq = np.array([[1.]]) bounds = [(None, None)] * 9 res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=108.568535, atol=1e-6) def test_bug_8174(self): # https://github.com/scipy/scipy/issues/8174 # The simplex method sometimes "explodes" if the pivot value is very # close to zero. A_ub = np.array([ [22714, 1008, 13380, -2713.5, -1116], [-4986, -1092, -31220, 17386.5, 684], [-4986, 0, 0, -2713.5, 0], [22714, 0, 0, 17386.5, 0]]) b_ub = np.zeros(A_ub.shape[0]) c = -np.ones(A_ub.shape[1]) bounds = [(0, 1)] * A_ub.shape[1] with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) if self.options.get('tol', 1e-9) < 1e-10 and self.method == 'simplex': _assert_unable_to_find_basic_feasible_sol(res) else: _assert_success(res, desired_fun=-2.0080717488789235, atol=1e-6) def test_bug_8174_2(self): # Test supplementary example from issue 8174. # https://github.com/scipy/scipy/issues/8174 # https://stackoverflow.com/questions/47717012/linprog-in-scipy-optimize-checking-solution c = np.array([1, 0, 0, 0, 0, 0, 0]) A_ub = -np.identity(7) b_ub = np.array([[-2], [-2], [-2], [-2], [-2], [-2], [-2]]) A_eq = np.array([ [1, 1, 1, 1, 1, 1, 0], [0.3, 1.3, 0.9, 0, 0, 0, -1], [0.3, 0, 0, 0, 0, 0, -2/3], [0, 0.65, 0, 0, 0, 0, -1/15], [0, 0, 0.3, 0, 0, 0, -1/15] ]) b_eq = np.array([[100], [0], [0], [0], [0]]) with suppress_warnings() as sup: if has_umfpack: sup.filter(UmfpackWarning) sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=43.3333333331385) def test_bug_8561(self): # Test that pivot row is chosen correctly when using Bland's rule # This was originally written for the simplex method with # Bland's rule only, but it doesn't hurt to test all methods/options # https://github.com/scipy/scipy/issues/8561 c = np.array([7, 0, -4, 1.5, 1.5]) A_ub = np.array([ [4, 5.5, 1.5, 1.0, -3.5], [1, -2.5, -2, 2.5, 0.5], [3, -0.5, 4, -12.5, -7], [-1, 4.5, 2, -3.5, -2], [5.5, 2, -4.5, -1, 9.5]]) b_ub = np.array([0, 0, 0, 0, 1]) res = linprog(c, A_ub=A_ub, b_ub=b_ub, options=self.options, method=self.method) _assert_success(res, desired_x=[0, 0, 19, 16/3, 29/3]) def test_bug_8662(self): # linprog simplex used to report incorrect optimal results # https://github.com/scipy/scipy/issues/8662 c = [-10, 10, 6, 3] A_ub = [[8, -8, -4, 6], [-8, 8, 4, -6], [-4, 4, 8, -4], [3, -3, -3, -10]] b_ub = [9, -9, -9, -4] bounds = [(0, None), (0, None), (0, None), (0, None)] desired_fun = 36.0000000000 with suppress_warnings() as sup: if has_umfpack: sup.filter(UmfpackWarning) sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res1 = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) # Set boundary condition as a constraint A_ub.append([0, 0, -1, 0]) b_ub.append(0) bounds[2] = (None, None) with suppress_warnings() as sup: if has_umfpack: sup.filter(UmfpackWarning) sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res2 = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) rtol = 1e-5 _assert_success(res1, desired_fun=desired_fun, rtol=rtol) _assert_success(res2, desired_fun=desired_fun, rtol=rtol) def test_bug_8663(self): # exposed a bug in presolve # https://github.com/scipy/scipy/issues/8663 c = [1, 5] A_eq = [[0, -7]] b_eq = [-6] bounds = [(0, None), (None, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[0, 6./7], desired_fun=5*6./7) def test_bug_8664(self): # interior-point has trouble with this when presolve is off # tested for interior-point with presolve off in TestLinprogIPSpecific # https://github.com/scipy/scipy/issues/8664 c = [4] A_ub = [[2], [5]] b_ub = [4, 4] A_eq = [[0], [-8], [9]] b_eq = [3, 2, 10] with suppress_warnings() as sup: sup.filter(RuntimeWarning) sup.filter(OptimizeWarning, "Solving system with option...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_infeasible(res) def test_bug_8973(self): """ Test whether bug described at: https://github.com/scipy/scipy/issues/8973 was fixed. """ c = np.array([0, 0, 0, 1, -1]) A_ub = np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]) b_ub = np.array([2, -2]) bounds = [(None, None), (None, None), (None, None), (-1, 1), (-1, 1)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) # solution vector x is not unique _assert_success(res, desired_fun=-2) # HiGHS IPM had an issue where the following wasn't true! assert_equal(c @ res.x, res.fun) def test_bug_8973_2(self): """ Additional test for: https://github.com/scipy/scipy/issues/8973 suggested in https://github.com/scipy/scipy/pull/8985 review by @antonior92 """ c = np.zeros(1) A_ub = np.array([[1]]) b_ub = np.array([-2]) bounds = (None, None) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[-2], desired_fun=0) def test_bug_10124(self): """ Test for linprog docstring problem 'disp'=True caused revised simplex failure """ c = np.zeros(1) A_ub = np.array([[1]]) b_ub = np.array([-2]) bounds = (None, None) c = [-1, 4] A_ub = [[-3, 1], [1, 2]] b_ub = [6, 4] bounds = [(None, None), (-3, None)] o = {"disp": True} o.update(self.options) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) _assert_success(res, desired_x=[10, -3], desired_fun=-22) def test_bug_10349(self): """ Test for redundancy removal tolerance issue https://github.com/scipy/scipy/issues/10349 """ A_eq = np.array([[1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1], [1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0], [0, 1, 0, 0, 0, 1]]) b_eq = np.array([221, 210, 10, 141, 198, 102]) c = np.concatenate((0, 1, np.zeros(4)), axis=None) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[129, 92, 12, 198, 0, 10], desired_fun=92) @pytest.mark.skip(sys.platform == 'darwin', reason="Failing on some local macOS builds, see gh-13846") def test_bug_10466(self): """ Test that autoscale fixes poorly-scaled problem """ c = [-8., -0., -8., -0., -8., -0., -0., -0., -0., -0., -0., -0., -0.] A_eq = [[1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 1., 0., 1., 0., -1., 0., 0., 0., 0., 0., 0.], [1., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.], [1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1.]] b_eq = [3.14572800e+08, 4.19430400e+08, 5.24288000e+08, 1.00663296e+09, 1.07374182e+09, 1.07374182e+09, 1.07374182e+09, 1.07374182e+09, 1.07374182e+09, 1.07374182e+09] o = {} # HiGHS methods don't use autoscale option if not self.method.startswith("highs"): o = {"autoscale": True} o.update(self.options) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "Solving system with option...") if has_umfpack: sup.filter(UmfpackWarning) sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...") sup.filter(RuntimeWarning, "divide by zero encountered...") sup.filter(RuntimeWarning, "overflow encountered...") sup.filter(RuntimeWarning, "invalid value encountered...") sup.filter(LinAlgWarning, "Ill-conditioned matrix...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) assert_allclose(res.fun, -8589934560) ######################### # Method-specific Tests # ######################### class LinprogSimplexTests(LinprogCommonTests): method = "simplex" class LinprogIPTests(LinprogCommonTests): method = "interior-point" class LinprogRSTests(LinprogCommonTests): method = "revised simplex" # Revised simplex does not reliably solve these problems. # Failure is intermittent due to the random choice of elements to complete # the basis after phase 1 terminates. In any case, linprog exists # gracefully, reporting numerical difficulties. I do not think this should # prevent revised simplex from being merged, as it solves the problems # most of the time and solves a broader range of problems than the existing # simplex implementation. # I believe that the root cause is the same for all three and that this # same issue prevents revised simplex from solving many other problems # reliably. Somehow the pivoting rule allows the algorithm to pivot into # a singular basis. I haven't been able to find a reference that # acknowledges this possibility, suggesting that there is a bug. On the # other hand, the pivoting rule is quite simple, and I can't find a # mistake, which suggests that this is a possibility with the pivoting # rule. Hopefully, a better pivoting rule will fix the issue. def test_bug_5400(self): pytest.skip("Intermittent failure acceptable.") def test_bug_8662(self): pytest.skip("Intermittent failure acceptable.") def test_network_flow(self): pytest.skip("Intermittent failure acceptable.") class LinprogHiGHSTests(LinprogCommonTests): def test_callback(self): # this is the problem from test_callback cb = lambda res: None c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] assert_raises(NotImplementedError, linprog, c, A_ub=A_ub, b_ub=b_ub, callback=cb, method=self.method) res = linprog(c, A_ub=A_ub, b_ub=b_ub, method=self.method) _assert_success(res, desired_fun=-18.0, desired_x=[2, 6]) @pytest.mark.parametrize("options", [{"maxiter": -1}, {"disp": -1}, {"presolve": -1}, {"time_limit": -1}, {"dual_feasibility_tolerance": -1}, {"primal_feasibility_tolerance": -1}, {"ipm_optimality_tolerance": -1}, {"simplex_dual_edge_weight_strategy": "ekki"}, ]) def test_invalid_option_values(self, options): def f(options): linprog(1, method=self.method, options=options) options.update(self.options) assert_warns(OptimizeWarning, f, options=options) def test_crossover(self): c = np.array([1, 1]) * -1 # maximize A_ub = np.array([[1, 1]]) b_ub = [1] res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) # there should be nonzero crossover iterations for IPM (only) assert_equal(res.crossover_nit == 0, self.method != "highs-ipm") def test_marginals(self): # Ensure lagrange multipliers are correct by comparing the derivative # w.r.t. b_ub/b_eq/ub/lb to the reported duals. c, A_ub, b_ub, A_eq, b_eq, bounds = very_random_gen(seed=0) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) lb, ub = bounds.T # sensitivity w.r.t. b_ub def f_bub(x): return linprog(c, A_ub, x, A_eq, b_eq, bounds, method=self.method).fun dfdbub = approx_derivative(f_bub, b_ub, method='3-point', f0=res.fun) assert_allclose(res.ineqlin.marginals, dfdbub) # sensitivity w.r.t. b_eq def f_beq(x): return linprog(c, A_ub, b_ub, A_eq, x, bounds, method=self.method).fun dfdbeq = approx_derivative(f_beq, b_eq, method='3-point', f0=res.fun) assert_allclose(res.eqlin.marginals, dfdbeq) # sensitivity w.r.t. lb def f_lb(x): bounds = np.array([x, ub]).T return linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method).fun with np.errstate(invalid='ignore'): # approx_derivative has trouble where lb is infinite dfdlb = approx_derivative(f_lb, lb, method='3-point', f0=res.fun) dfdlb[~np.isfinite(lb)] = 0 assert_allclose(res.lower.marginals, dfdlb) # sensitivity w.r.t. ub def f_ub(x): bounds = np.array([lb, x]).T return linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method).fun with np.errstate(invalid='ignore'): dfdub = approx_derivative(f_ub, ub, method='3-point', f0=res.fun) dfdub[~np.isfinite(ub)] = 0 assert_allclose(res.upper.marginals, dfdub) def test_dual_feasibility(self): # Ensure solution is dual feasible using marginals c, A_ub, b_ub, A_eq, b_eq, bounds = very_random_gen(seed=42) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) # KKT dual feasibility equation from Theorem 1 from # http://www.personal.psu.edu/cxg286/LPKKT.pdf resid = (-c + A_ub.T @ res.ineqlin.marginals + A_eq.T @ res.eqlin.marginals + res.upper.marginals + res.lower.marginals) assert_allclose(resid, 0, atol=1e-12) def test_complementary_slackness(self): # Ensure that the complementary slackness condition is satisfied. c, A_ub, b_ub, A_eq, b_eq, bounds = very_random_gen(seed=42) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) # KKT complementary slackness equation from Theorem 1 from # http://www.personal.psu.edu/cxg286/LPKKT.pdf modified for # non-zero RHS assert np.allclose(res.ineqlin.marginals @ (b_ub - A_ub @ res.x), 0) ################################ # Simplex Option-Specific Tests# ################################ class TestLinprogSimplexDefault(LinprogSimplexTests): def setup_method(self): self.options = {} def test_bug_5400(self): pytest.skip("Simplex fails on this problem.") def test_bug_7237_low_tol(self): # Fails if the tolerance is too strict. Here, we test that # even if the solution is wrong, the appropriate error is raised. pytest.skip("Simplex fails on this problem.") def test_bug_8174_low_tol(self): # Fails if the tolerance is too strict. Here, we test that # even if the solution is wrong, the appropriate warning is issued. self.options.update({'tol': 1e-12}) with pytest.warns(OptimizeWarning): super().test_bug_8174() class TestLinprogSimplexBland(LinprogSimplexTests): def setup_method(self): self.options = {'bland': True} def test_bug_5400(self): pytest.skip("Simplex fails on this problem.") def test_bug_8174_low_tol(self): # Fails if the tolerance is too strict. Here, we test that # even if the solution is wrong, the appropriate error is raised. self.options.update({'tol': 1e-12}) with pytest.raises(AssertionError): with pytest.warns(OptimizeWarning): super().test_bug_8174() class TestLinprogSimplexNoPresolve(LinprogSimplexTests): def setup_method(self): self.options = {'presolve': False} is_32_bit = np.intp(0).itemsize < 8 is_linux = sys.platform.startswith('linux') @pytest.mark.xfail( condition=is_32_bit and is_linux, reason='Fails with warning on 32-bit linux') def test_bug_5400(self): super().test_bug_5400() def test_bug_6139_low_tol(self): # Linprog(method='simplex') fails to find a basic feasible solution # if phase 1 pseudo-objective function is outside the provided tol. # https://github.com/scipy/scipy/issues/6139 # Without ``presolve`` eliminating such rows the result is incorrect. self.options.update({'tol': 1e-12}) with pytest.raises(AssertionError, match='linprog status 4'): return super().test_bug_6139() def test_bug_7237_low_tol(self): pytest.skip("Simplex fails on this problem.") def test_bug_8174_low_tol(self): # Fails if the tolerance is too strict. Here, we test that # even if the solution is wrong, the appropriate warning is issued. self.options.update({'tol': 1e-12}) with pytest.warns(OptimizeWarning): super().test_bug_8174() def test_unbounded_no_nontrivial_constraints_1(self): pytest.skip("Tests behavior specific to presolve") def test_unbounded_no_nontrivial_constraints_2(self): pytest.skip("Tests behavior specific to presolve") ####################################### # Interior-Point Option-Specific Tests# ####################################### class TestLinprogIPDense(LinprogIPTests): options = {"sparse": False} if has_cholmod: class TestLinprogIPSparseCholmod(LinprogIPTests): options = {"sparse": True, "cholesky": True} if has_umfpack: class TestLinprogIPSparseUmfpack(LinprogIPTests): options = {"sparse": True, "cholesky": False} def test_bug_10466(self): pytest.skip("Autoscale doesn't fix everything, and that's OK.") def test_network_flow_limited_capacity(self): pytest.skip("Failing due to numerical issues on some platforms.") class TestLinprogIPSparse(LinprogIPTests): options = {"sparse": True, "cholesky": False, "sym_pos": False} @pytest.mark.xfail_on_32bit("This test is sensitive to machine epsilon level " "perturbations in linear system solution in " "_linprog_ip._sym_solve.") def test_bug_6139(self): super().test_bug_6139() @pytest.mark.xfail(reason='Fails with ATLAS, see gh-7877') def test_bug_6690(self): # Test defined in base class, but can't mark as xfail there super().test_bug_6690() def test_magic_square_sparse_no_presolve(self): # test linprog with a problem with a rank-deficient A_eq matrix A_eq, b_eq, c, N = magic_square(3) bounds = (0, 1) with suppress_warnings() as sup: if has_umfpack: sup.filter(UmfpackWarning) sup.filter(MatrixRankWarning, "Matrix is exactly singular") sup.filter(OptimizeWarning, "Solving system with option...") o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) _assert_success(res, desired_fun=1.730550597) def test_sparse_solve_options(self): # checking that problem is solved with all column permutation options A_eq, b_eq, c, N = magic_square(3) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") sup.filter(OptimizeWarning, "Invalid permc_spec option") o = {key: self.options[key] for key in self.options} permc_specs = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD', 'ekki-ekki-ekki') # 'ekki-ekki-ekki' raises warning about invalid permc_spec option # and uses default for permc_spec in permc_specs: o["permc_spec"] = permc_spec res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=o) _assert_success(res, desired_fun=1.730550597) class TestLinprogIPSparsePresolve(LinprogIPTests): options = {"sparse": True, "_sparse_presolve": True} @pytest.mark.xfail_on_32bit("This test is sensitive to machine epsilon level " "perturbations in linear system solution in " "_linprog_ip._sym_solve.") def test_bug_6139(self): super().test_bug_6139() def test_enzo_example_c_with_infeasibility(self): pytest.skip('_sparse_presolve=True incompatible with presolve=False') @pytest.mark.xfail(reason='Fails with ATLAS, see gh-7877') def test_bug_6690(self): # Test defined in base class, but can't mark as xfail there super().test_bug_6690() class TestLinprogIPSpecific: method = "interior-point" # the following tests don't need to be performed separately for # sparse presolve, sparse after presolve, and dense def test_solver_select(self): # check that default solver is selected as expected if has_cholmod: options = {'sparse': True, 'cholesky': True} elif has_umfpack: options = {'sparse': True, 'cholesky': False} else: options = {'sparse': True, 'cholesky': False, 'sym_pos': False} A, b, c = lpgen_2d(20, 20) res1 = linprog(c, A_ub=A, b_ub=b, method=self.method, options=options) res2 = linprog(c, A_ub=A, b_ub=b, method=self.method) # default solver assert_allclose(res1.fun, res2.fun, err_msg="linprog default solver unexpected result", rtol=1e-15, atol=1e-15) def test_unbounded_below_no_presolve_original(self): # formerly caused segfault in TravisCI w/ "cholesky":True c = [-1] bounds = [(None, 1)] res = linprog(c=c, bounds=bounds, method=self.method, options={"presolve": False, "cholesky": True}) _assert_success(res, desired_fun=-1) def test_cholesky(self): # use cholesky factorization and triangular solves A, b, c = lpgen_2d(20, 20) res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"cholesky": True}) # only for dense _assert_success(res, desired_fun=-64.049494229) def test_alternate_initial_point(self): # use "improved" initial point A, b, c = lpgen_2d(20, 20) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...") sup.filter(OptimizeWarning, "Solving system with option...") sup.filter(LinAlgWarning, "Ill-conditioned matrix...") res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"ip": True, "disp": True}) # ip code is independent of sparse/dense _assert_success(res, desired_fun=-64.049494229) def test_bug_8664(self): # interior-point has trouble with this when presolve is off c = [4] A_ub = [[2], [5]] b_ub = [4, 4] A_eq = [[0], [-8], [9]] b_eq = [3, 2, 10] with suppress_warnings() as sup: sup.filter(RuntimeWarning) sup.filter(OptimizeWarning, "Solving system with option...") res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options={"presolve": False}) assert_(not res.success, "Incorrectly reported success") ######################################## # Revised Simplex Option-Specific Tests# ######################################## class TestLinprogRSCommon(LinprogRSTests): options = {} def test_cyclic_bland(self): pytest.skip("Intermittent failure acceptable.") def test_nontrivial_problem_with_guess(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=x_star) _assert_success(res, desired_fun=f_star, desired_x=x_star) assert_equal(res.nit, 0) def test_nontrivial_problem_with_unbounded_variables(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() bounds = [(None, None), (None, None), (0, None), (None, None)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=x_star) _assert_success(res, desired_fun=f_star, desired_x=x_star) assert_equal(res.nit, 0) def test_nontrivial_problem_with_bounded_variables(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() bounds = [(None, 1), (1, None), (0, None), (.4, .6)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=x_star) _assert_success(res, desired_fun=f_star, desired_x=x_star) assert_equal(res.nit, 0) def test_nontrivial_problem_with_negative_unbounded_variable(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() b_eq = [4] x_star = np.array([-219/385, 582/385, 0, 4/10]) f_star = 3951/385 bounds = [(None, None), (1, None), (0, None), (.4, .6)] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=x_star) _assert_success(res, desired_fun=f_star, desired_x=x_star) assert_equal(res.nit, 0) def test_nontrivial_problem_with_bad_guess(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() bad_guess = [1, 2, 3, .5] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=bad_guess) assert_equal(res.status, 6) def test_redundant_constraints_with_guess(self): A, b, c, N = magic_square(3) p = np.random.rand(*c.shape) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") sup.filter(RuntimeWarning, "invalid value encountered") sup.filter(LinAlgWarning) res = linprog(c, A_eq=A, b_eq=b, method=self.method) res2 = linprog(c, A_eq=A, b_eq=b, method=self.method, x0=res.x) res3 = linprog(c + p, A_eq=A, b_eq=b, method=self.method, x0=res.x) _assert_success(res2, desired_fun=1.730550597) assert_equal(res2.nit, 0) _assert_success(res3) assert_(res3.nit < res.nit) # hot start reduces iterations class TestLinprogRSBland(LinprogRSTests): options = {"pivot": "bland"} ############################################ # HiGHS-Simplex-Dual Option-Specific Tests # ############################################ class TestLinprogHiGHSSimplexDual(LinprogHiGHSTests): method = "highs-ds" options = {} def test_lad_regression(self): '''The scaled model should be optimal but unscaled model infeasible.''' c, A_ub, b_ub, bnds = l1_regression_prob() res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=bnds, method=self.method, options=self.options) assert_equal(res.status, 4) assert_('An optimal solution to the scaled ' 'model was found but' in res.message) assert_(res.x is not None) assert_(np.all(res.slack > -1e-6)) assert_(np.all(res.x <= [np.inf if u is None else u for l, u in bnds])) assert_(np.all(res.x >= [-np.inf if l is None else l for l, u in bnds])) ################################### # HiGHS-IPM Option-Specific Tests # ################################### class TestLinprogHiGHSIPM(LinprogHiGHSTests): method = "highs-ipm" options = {} ########################### # Autoscale-Specific Tests# ########################### class AutoscaleTests: options = {"autoscale": True} test_bug_6139 = LinprogCommonTests.test_bug_6139 test_bug_6690 = LinprogCommonTests.test_bug_6690 test_bug_7237 = LinprogCommonTests.test_bug_7237 class TestAutoscaleIP(AutoscaleTests): method = "interior-point" def test_bug_6139(self): self.options['tol'] = 1e-10 return AutoscaleTests.test_bug_6139(self) class TestAutoscaleSimplex(AutoscaleTests): method = "simplex" class TestAutoscaleRS(AutoscaleTests): method = "revised simplex" def test_nontrivial_problem_with_guess(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=x_star) _assert_success(res, desired_fun=f_star, desired_x=x_star) assert_equal(res.nit, 0) def test_nontrivial_problem_with_bad_guess(self): c, A_ub, b_ub, A_eq, b_eq, x_star, f_star = nontrivial_problem() bad_guess = [1, 2, 3, .5] res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options, x0=bad_guess) assert_equal(res.status, 6) ########################### # Redundancy Removal Tests# ########################### class RRTests: method = "interior-point" LCT = LinprogCommonTests # these are a few of the existing tests that have redundancy test_RR_infeasibility = LCT.test_remove_redundancy_infeasibility test_bug_10349 = LCT.test_bug_10349 test_bug_7044 = LCT.test_bug_7044 test_NFLC = LCT.test_network_flow_limited_capacity test_enzo_example_b = LCT.test_enzo_example_b class TestRRSVD(RRTests): options = {"rr_method": "SVD"} class TestRRPivot(RRTests): options = {"rr_method": "pivot"} class TestRRID(RRTests): options = {"rr_method": "ID"}