""" Unit tests for trust-region optimization routines. To run it in its simplest form:: nosetests test_optimize.py """ import itertools from copy import deepcopy import numpy as np from numpy.testing import assert_, assert_equal, assert_allclose from scipy.optimize import (minimize, rosen, rosen_der, rosen_hess, rosen_hess_prod, BFGS) from scipy.optimize._differentiable_functions import FD_METHODS import pytest class Accumulator: """ This is for testing callbacks.""" def __init__(self): self.count = 0 self.accum = None def __call__(self, x): self.count += 1 if self.accum is None: self.accum = np.array(x) else: self.accum += x class TestTrustRegionSolvers: def setup_method(self): self.x_opt = [1.0, 1.0] self.easy_guess = [2.0, 2.0] self.hard_guess = [-1.2, 1.0] def test_dogleg_accuracy(self): # test the accuracy and the return_all option x0 = self.hard_guess r = minimize(rosen, x0, jac=rosen_der, hess=rosen_hess, tol=1e-8, method='dogleg', options={'return_all': True},) assert_allclose(x0, r['allvecs'][0]) assert_allclose(r['x'], r['allvecs'][-1]) assert_allclose(r['x'], self.x_opt) def test_dogleg_callback(self): # test the callback mechanism and the maxiter and return_all options accumulator = Accumulator() maxiter = 5 r = minimize(rosen, self.hard_guess, jac=rosen_der, hess=rosen_hess, callback=accumulator, method='dogleg', options={'return_all': True, 'maxiter': maxiter},) assert_equal(accumulator.count, maxiter) assert_equal(len(r['allvecs']), maxiter+1) assert_allclose(r['x'], r['allvecs'][-1]) assert_allclose(sum(r['allvecs'][1:]), accumulator.accum) def test_solver_concordance(self): # Assert that dogleg uses fewer iterations than ncg on the Rosenbrock # test function, although this does not necessarily mean # that dogleg is faster or better than ncg even for this function # and especially not for other test functions. f = rosen g = rosen_der h = rosen_hess for x0 in (self.easy_guess, self.hard_guess): r_dogleg = minimize(f, x0, jac=g, hess=h, tol=1e-8, method='dogleg', options={'return_all': True}) r_trust_ncg = minimize(f, x0, jac=g, hess=h, tol=1e-8, method='trust-ncg', options={'return_all': True}) r_trust_krylov = minimize(f, x0, jac=g, hess=h, tol=1e-8, method='trust-krylov', options={'return_all': True}) r_ncg = minimize(f, x0, jac=g, hess=h, tol=1e-8, method='newton-cg', options={'return_all': True}) r_iterative = minimize(f, x0, jac=g, hess=h, tol=1e-8, method='trust-exact', options={'return_all': True}) assert_allclose(self.x_opt, r_dogleg['x']) assert_allclose(self.x_opt, r_trust_ncg['x']) assert_allclose(self.x_opt, r_trust_krylov['x']) assert_allclose(self.x_opt, r_ncg['x']) assert_allclose(self.x_opt, r_iterative['x']) assert_(len(r_dogleg['allvecs']) < len(r_ncg['allvecs'])) def test_trust_ncg_hessp(self): for x0 in (self.easy_guess, self.hard_guess, self.x_opt): r = minimize(rosen, x0, jac=rosen_der, hessp=rosen_hess_prod, tol=1e-8, method='trust-ncg') assert_allclose(self.x_opt, r['x']) def test_trust_ncg_start_in_optimum(self): r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=rosen_hess, tol=1e-8, method='trust-ncg') assert_allclose(self.x_opt, r['x']) def test_trust_krylov_start_in_optimum(self): r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=rosen_hess, tol=1e-8, method='trust-krylov') assert_allclose(self.x_opt, r['x']) def test_trust_exact_start_in_optimum(self): r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=rosen_hess, tol=1e-8, method='trust-exact') assert_allclose(self.x_opt, r['x']) def test_finite_differences(self): # if the Hessian is estimated by finite differences or # a HessianUpdateStrategy (and no hessp is provided) then creation # of a hessp is possible. # GH13754 methods = ["trust-ncg", "trust-krylov", "dogleg"] product = itertools.product( FD_METHODS + (BFGS,), methods ) # a hessian needs to be specified for trustregion for method in methods: with pytest.raises(ValueError): minimize(rosen, x0=self.x_opt, jac=rosen_der, method=method) # estimate hessian by finite differences. In _trustregion.py this # creates a hessp from the LinearOperator/HessianUpdateStrategy # that's returned from ScalarFunction. for fd, method in product: hess = fd if fd == BFGS: # don't want to use the same object over and over hess = deepcopy(fd()) r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=hess, tol=1e-8, method=method) assert_allclose(self.x_opt, r['x'])