# Author: Pim Schellart # 2010 - 2011 """Tools for spectral analysis of unequally sampled signals.""" import numpy as np #pythran export _lombscargle(float64[], float64[], float64[]) def _lombscargle(x, y, freqs): """ _lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram. Parameters ---------- x : array_like Sample times. y : array_like Measurement values (must be registered so the mean is zero). freqs : array_like Angular frequencies for output periodogram. Returns ------- pgram : array_like Lomb-Scargle periodogram. Raises ------ ValueError If the input arrays `x` and `y` do not have the same shape. See also -------- lombscargle """ # Check input sizes if x.shape != y.shape: raise ValueError("Input arrays do not have the same size.") # Create empty array for output periodogram pgram = np.empty_like(freqs) c = np.empty_like(x) s = np.empty_like(x) for i in range(freqs.shape[0]): xc = 0. xs = 0. cc = 0. ss = 0. cs = 0. c[:] = np.cos(freqs[i] * x) s[:] = np.sin(freqs[i] * x) for j in range(x.shape[0]): xc += y[j] * c[j] xs += y[j] * s[j] cc += c[j] * c[j] ss += s[j] * s[j] cs += c[j] * s[j] if freqs[i] == 0: raise ZeroDivisionError() tau = np.arctan2(2 * cs, cc - ss) / (2 * freqs[i]) c_tau = np.cos(freqs[i] * tau) s_tau = np.sin(freqs[i] * tau) c_tau2 = c_tau * c_tau s_tau2 = s_tau * s_tau cs_tau = 2 * c_tau * s_tau pgram[i] = 0.5 * (((c_tau * xc + s_tau * xs)**2 / \ (c_tau2 * cc + cs_tau * cs + s_tau2 * ss)) + \ ((c_tau * xs - s_tau * xc)**2 / \ (c_tau2 * ss - cs_tau * cs + s_tau2 * cc))) return pgram