import copy import numpy as np from numpy.testing import ( assert_, assert_equal, assert_allclose, assert_array_equal ) import pytest from pytest import raises, warns from scipy.signal._peak_finding import ( argrelmax, argrelmin, peak_prominences, peak_widths, _unpack_condition_args, find_peaks, find_peaks_cwt, _identify_ridge_lines ) from scipy.signal._peak_finding_utils import _local_maxima_1d, PeakPropertyWarning def _gen_gaussians(center_locs, sigmas, total_length): xdata = np.arange(0, total_length).astype(float) out_data = np.zeros(total_length, dtype=float) for ind, sigma in enumerate(sigmas): tmp = (xdata - center_locs[ind]) / sigma out_data += np.exp(-(tmp**2)) return out_data def _gen_gaussians_even(sigmas, total_length): num_peaks = len(sigmas) delta = total_length / (num_peaks + 1) center_locs = np.linspace(delta, total_length - delta, num=num_peaks).astype(int) out_data = _gen_gaussians(center_locs, sigmas, total_length) return out_data, center_locs def _gen_ridge_line(start_locs, max_locs, length, distances, gaps): """ Generate coordinates for a ridge line. Will be a series of coordinates, starting a start_loc (length 2). The maximum distance between any adjacent columns will be `max_distance`, the max distance between adjacent rows will be `map_gap'. `max_locs` should be the size of the intended matrix. The ending coordinates are guaranteed to be less than `max_locs`, although they may not approach `max_locs` at all. """ def keep_bounds(num, max_val): out = max(num, 0) out = min(out, max_val) return out gaps = copy.deepcopy(gaps) distances = copy.deepcopy(distances) locs = np.zeros([length, 2], dtype=int) locs[0, :] = start_locs total_length = max_locs[0] - start_locs[0] - sum(gaps) if total_length < length: raise ValueError('Cannot generate ridge line according to constraints') dist_int = length / len(distances) - 1 gap_int = length / len(gaps) - 1 for ind in range(1, length): nextcol = locs[ind - 1, 1] nextrow = locs[ind - 1, 0] + 1 if (ind % dist_int == 0) and (len(distances) > 0): nextcol += ((-1)**ind)*distances.pop() if (ind % gap_int == 0) and (len(gaps) > 0): nextrow += gaps.pop() nextrow = keep_bounds(nextrow, max_locs[0]) nextcol = keep_bounds(nextcol, max_locs[1]) locs[ind, :] = [nextrow, nextcol] return [locs[:, 0], locs[:, 1]] class TestLocalMaxima1d: def test_empty(self): """Test with empty signal.""" x = np.array([], dtype=np.float64) for array in _local_maxima_1d(x): assert_equal(array, np.array([])) assert_(array.base is None) def test_linear(self): """Test with linear signal.""" x = np.linspace(0, 100) for array in _local_maxima_1d(x): assert_equal(array, np.array([])) assert_(array.base is None) def test_simple(self): """Test with simple signal.""" x = np.linspace(-10, 10, 50) x[2::3] += 1 expected = np.arange(2, 50, 3) for array in _local_maxima_1d(x): # For plateaus of size 1, the edges are identical with the # midpoints assert_equal(array, expected) assert_(array.base is None) def test_flat_maxima(self): """Test if flat maxima are detected correctly.""" x = np.array([-1.3, 0, 1, 0, 2, 2, 0, 3, 3, 3, 2.99, 4, 4, 4, 4, -10, -5, -5, -5, -5, -5, -10]) midpoints, left_edges, right_edges = _local_maxima_1d(x) assert_equal(midpoints, np.array([2, 4, 8, 12, 18])) assert_equal(left_edges, np.array([2, 4, 7, 11, 16])) assert_equal(right_edges, np.array([2, 5, 9, 14, 20])) @pytest.mark.parametrize('x', [ np.array([1., 0, 2]), np.array([3., 3, 0, 4, 4]), np.array([5., 5, 5, 0, 6, 6, 6]), ]) def test_signal_edges(self, x): """Test if behavior on signal edges is correct.""" for array in _local_maxima_1d(x): assert_equal(array, np.array([])) assert_(array.base is None) def test_exceptions(self): """Test input validation and raised exceptions.""" with raises(ValueError, match="wrong number of dimensions"): _local_maxima_1d(np.ones((1, 1))) with raises(ValueError, match="expected 'float64_t'"): _local_maxima_1d(np.ones(1, dtype=int)) with raises(TypeError, match="list"): _local_maxima_1d([1., 2.]) with raises(TypeError, match="'x' must not be None"): _local_maxima_1d(None) class TestRidgeLines: def test_empty(self): test_matr = np.zeros([20, 100]) lines = _identify_ridge_lines(test_matr, np.full(20, 2), 1) assert_(len(lines) == 0) def test_minimal(self): test_matr = np.zeros([20, 100]) test_matr[0, 10] = 1 lines = _identify_ridge_lines(test_matr, np.full(20, 2), 1) assert_(len(lines) == 1) test_matr = np.zeros([20, 100]) test_matr[0:2, 10] = 1 lines = _identify_ridge_lines(test_matr, np.full(20, 2), 1) assert_(len(lines) == 1) def test_single_pass(self): distances = [0, 1, 2, 5] gaps = [0, 1, 2, 0, 1] test_matr = np.zeros([20, 50]) + 1e-12 length = 12 line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps) test_matr[line[0], line[1]] = 1 max_distances = np.full(20, max(distances)) identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1) assert_array_equal(identified_lines, [line]) def test_single_bigdist(self): distances = [0, 1, 2, 5] gaps = [0, 1, 2, 4] test_matr = np.zeros([20, 50]) length = 12 line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps) test_matr[line[0], line[1]] = 1 max_dist = 3 max_distances = np.full(20, max_dist) #This should get 2 lines, since the distance is too large identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1) assert_(len(identified_lines) == 2) for iline in identified_lines: adists = np.diff(iline[1]) np.testing.assert_array_less(np.abs(adists), max_dist) agaps = np.diff(iline[0]) np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1) def test_single_biggap(self): distances = [0, 1, 2, 5] max_gap = 3 gaps = [0, 4, 2, 1] test_matr = np.zeros([20, 50]) length = 12 line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps) test_matr[line[0], line[1]] = 1 max_dist = 6 max_distances = np.full(20, max_dist) #This should get 2 lines, since the gap is too large identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap) assert_(len(identified_lines) == 2) for iline in identified_lines: adists = np.diff(iline[1]) np.testing.assert_array_less(np.abs(adists), max_dist) agaps = np.diff(iline[0]) np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1) def test_single_biggaps(self): distances = [0] max_gap = 1 gaps = [3, 6] test_matr = np.zeros([50, 50]) length = 30 line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps) test_matr[line[0], line[1]] = 1 max_dist = 1 max_distances = np.full(50, max_dist) #This should get 3 lines, since the gaps are too large identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap) assert_(len(identified_lines) == 3) for iline in identified_lines: adists = np.diff(iline[1]) np.testing.assert_array_less(np.abs(adists), max_dist) agaps = np.diff(iline[0]) np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1) class TestArgrel: def test_empty(self): # Regression test for gh-2832. # When there are no relative extrema, make sure that # the number of empty arrays returned matches the # dimension of the input. empty_array = np.array([], dtype=int) z1 = np.zeros(5) i = argrelmin(z1) assert_equal(len(i), 1) assert_array_equal(i[0], empty_array) z2 = np.zeros((3,5)) row, col = argrelmin(z2, axis=0) assert_array_equal(row, empty_array) assert_array_equal(col, empty_array) row, col = argrelmin(z2, axis=1) assert_array_equal(row, empty_array) assert_array_equal(col, empty_array) def test_basic(self): # Note: the docstrings for the argrel{min,max,extrema} functions # do not give a guarantee of the order of the indices, so we'll # sort them before testing. x = np.array([[1, 2, 2, 3, 2], [2, 1, 2, 2, 3], [3, 2, 1, 2, 2], [2, 3, 2, 1, 2], [1, 2, 3, 2, 1]]) row, col = argrelmax(x, axis=0) order = np.argsort(row) assert_equal(row[order], [1, 2, 3]) assert_equal(col[order], [4, 0, 1]) row, col = argrelmax(x, axis=1) order = np.argsort(row) assert_equal(row[order], [0, 3, 4]) assert_equal(col[order], [3, 1, 2]) row, col = argrelmin(x, axis=0) order = np.argsort(row) assert_equal(row[order], [1, 2, 3]) assert_equal(col[order], [1, 2, 3]) row, col = argrelmin(x, axis=1) order = np.argsort(row) assert_equal(row[order], [1, 2, 3]) assert_equal(col[order], [1, 2, 3]) def test_highorder(self): order = 2 sigmas = [1.0, 2.0, 10.0, 5.0, 15.0] test_data, act_locs = _gen_gaussians_even(sigmas, 500) test_data[act_locs + order] = test_data[act_locs]*0.99999 test_data[act_locs - order] = test_data[act_locs]*0.99999 rel_max_locs = argrelmax(test_data, order=order, mode='clip')[0] assert_(len(rel_max_locs) == len(act_locs)) assert_((rel_max_locs == act_locs).all()) def test_2d_gaussians(self): sigmas = [1.0, 2.0, 10.0] test_data, act_locs = _gen_gaussians_even(sigmas, 100) rot_factor = 20 rot_range = np.arange(0, len(test_data)) - rot_factor test_data_2 = np.vstack([test_data, test_data[rot_range]]) rel_max_rows, rel_max_cols = argrelmax(test_data_2, axis=1, order=1) for rw in range(0, test_data_2.shape[0]): inds = (rel_max_rows == rw) assert_(len(rel_max_cols[inds]) == len(act_locs)) assert_((act_locs == (rel_max_cols[inds] - rot_factor*rw)).all()) class TestPeakProminences: def test_empty(self): """ Test if an empty array is returned if no peaks are provided. """ out = peak_prominences([1, 2, 3], []) for arr, dtype in zip(out, [np.float64, np.intp, np.intp]): assert_(arr.size == 0) assert_(arr.dtype == dtype) out = peak_prominences([], []) for arr, dtype in zip(out, [np.float64, np.intp, np.intp]): assert_(arr.size == 0) assert_(arr.dtype == dtype) def test_basic(self): """ Test if height of prominences is correctly calculated in signal with rising baseline (peak widths are 1 sample). """ # Prepare basic signal x = np.array([-1, 1.2, 1.2, 1, 3.2, 1.3, 2.88, 2.1]) peaks = np.array([1, 2, 4, 6]) lbases = np.array([0, 0, 0, 5]) rbases = np.array([3, 3, 5, 7]) proms = x[peaks] - np.max([x[lbases], x[rbases]], axis=0) # Test if calculation matches handcrafted result out = peak_prominences(x, peaks) assert_equal(out[0], proms) assert_equal(out[1], lbases) assert_equal(out[2], rbases) def test_edge_cases(self): """ Test edge cases. """ # Peaks have same height, prominence and bases x = [0, 2, 1, 2, 1, 2, 0] peaks = [1, 3, 5] proms, lbases, rbases = peak_prominences(x, peaks) assert_equal(proms, [2, 2, 2]) assert_equal(lbases, [0, 0, 0]) assert_equal(rbases, [6, 6, 6]) # Peaks have same height & prominence but different bases x = [0, 1, 0, 1, 0, 1, 0] peaks = np.array([1, 3, 5]) proms, lbases, rbases = peak_prominences(x, peaks) assert_equal(proms, [1, 1, 1]) assert_equal(lbases, peaks - 1) assert_equal(rbases, peaks + 1) def test_non_contiguous(self): """ Test with non-C-contiguous input arrays. """ x = np.repeat([-9, 9, 9, 0, 3, 1], 2) peaks = np.repeat([1, 2, 4], 2) proms, lbases, rbases = peak_prominences(x[::2], peaks[::2]) assert_equal(proms, [9, 9, 2]) assert_equal(lbases, [0, 0, 3]) assert_equal(rbases, [3, 3, 5]) def test_wlen(self): """ Test if wlen actually shrinks the evaluation range correctly. """ x = [0, 1, 2, 3, 1, 0, -1] peak = [3] # Test rounding behavior of wlen assert_equal(peak_prominences(x, peak), [3., 0, 6]) for wlen, i in [(8, 0), (7, 0), (6, 0), (5, 1), (3.2, 1), (3, 2), (1.1, 2)]: assert_equal(peak_prominences(x, peak, wlen), [3. - i, 0 + i, 6 - i]) def test_exceptions(self): """ Verify that exceptions and warnings are raised. """ # x with dimension > 1 with raises(ValueError, match='1-D array'): peak_prominences([[0, 1, 1, 0]], [1, 2]) # peaks with dimension > 1 with raises(ValueError, match='1-D array'): peak_prominences([0, 1, 1, 0], [[1, 2]]) # x with dimension < 1 with raises(ValueError, match='1-D array'): peak_prominences(3, [0,]) # empty x with supplied with raises(ValueError, match='not a valid index'): peak_prominences([], [0]) # invalid indices with non-empty x for p in [-100, -1, 3, 1000]: with raises(ValueError, match='not a valid index'): peak_prominences([1, 0, 2], [p]) # peaks is not cast-able to np.intp with raises(TypeError, match='cannot safely cast'): peak_prominences([0, 1, 1, 0], [1.1, 2.3]) # wlen < 3 with raises(ValueError, match='wlen'): peak_prominences(np.arange(10), [3, 5], wlen=1) def test_warnings(self): """ Verify that appropriate warnings are raised. """ msg = "some peaks have a prominence of 0" for p in [0, 1, 2]: with warns(PeakPropertyWarning, match=msg): peak_prominences([1, 0, 2], [p,]) with warns(PeakPropertyWarning, match=msg): peak_prominences([0, 1, 1, 1, 0], [2], wlen=2) class TestPeakWidths: def test_empty(self): """ Test if an empty array is returned if no peaks are provided. """ widths = peak_widths([], [])[0] assert_(isinstance(widths, np.ndarray)) assert_equal(widths.size, 0) widths = peak_widths([1, 2, 3], [])[0] assert_(isinstance(widths, np.ndarray)) assert_equal(widths.size, 0) out = peak_widths([], []) for arr in out: assert_(isinstance(arr, np.ndarray)) assert_equal(arr.size, 0) @pytest.mark.filterwarnings("ignore:some peaks have a width of 0") def test_basic(self): """ Test a simple use case with easy to verify results at different relative heights. """ x = np.array([1, 0, 1, 2, 1, 0, -1]) prominence = 2 for rel_height, width_true, lip_true, rip_true in [ (0., 0., 3., 3.), # raises warning (0.25, 1., 2.5, 3.5), (0.5, 2., 2., 4.), (0.75, 3., 1.5, 4.5), (1., 4., 1., 5.), (2., 5., 1., 6.), (3., 5., 1., 6.) ]: width_calc, height, lip_calc, rip_calc = peak_widths( x, [3], rel_height) assert_allclose(width_calc, width_true) assert_allclose(height, 2 - rel_height * prominence) assert_allclose(lip_calc, lip_true) assert_allclose(rip_calc, rip_true) def test_non_contiguous(self): """ Test with non-C-contiguous input arrays. """ x = np.repeat([0, 100, 50], 4) peaks = np.repeat([1], 3) result = peak_widths(x[::4], peaks[::3]) assert_equal(result, [0.75, 75, 0.75, 1.5]) def test_exceptions(self): """ Verify that argument validation works as intended. """ with raises(ValueError, match='1-D array'): # x with dimension > 1 peak_widths(np.zeros((3, 4)), np.ones(3)) with raises(ValueError, match='1-D array'): # x with dimension < 1 peak_widths(3, [0]) with raises(ValueError, match='1-D array'): # peaks with dimension > 1 peak_widths(np.arange(10), np.ones((3, 2), dtype=np.intp)) with raises(ValueError, match='1-D array'): # peaks with dimension < 1 peak_widths(np.arange(10), 3) with raises(ValueError, match='not a valid index'): # peak pos exceeds x.size peak_widths(np.arange(10), [8, 11]) with raises(ValueError, match='not a valid index'): # empty x with peaks supplied peak_widths([], [1, 2]) with raises(TypeError, match='cannot safely cast'): # peak cannot be safely casted to intp peak_widths(np.arange(10), [1.1, 2.3]) with raises(ValueError, match='rel_height'): # rel_height is < 0 peak_widths([0, 1, 0, 1, 0], [1, 3], rel_height=-1) with raises(TypeError, match='None'): # prominence data contains None peak_widths([1, 2, 1], [1], prominence_data=(None, None, None)) def test_warnings(self): """ Verify that appropriate warnings are raised. """ msg = "some peaks have a width of 0" with warns(PeakPropertyWarning, match=msg): # Case: rel_height is 0 peak_widths([0, 1, 0], [1], rel_height=0) with warns(PeakPropertyWarning, match=msg): # Case: prominence is 0 and bases are identical peak_widths( [0, 1, 1, 1, 0], [2], prominence_data=(np.array([0.], np.float64), np.array([2], np.intp), np.array([2], np.intp)) ) def test_mismatching_prominence_data(self): """Test with mismatching peak and / or prominence data.""" x = [0, 1, 0] peak = [1] for i, (prominences, left_bases, right_bases) in enumerate([ ((1.,), (-1,), (2,)), # left base not in x ((1.,), (0,), (3,)), # right base not in x ((1.,), (2,), (0,)), # swapped bases same as peak ((1., 1.), (0, 0), (2, 2)), # array shapes don't match peaks ((1., 1.), (0,), (2,)), # arrays with different shapes ((1.,), (0, 0), (2,)), # arrays with different shapes ((1.,), (0,), (2, 2)) # arrays with different shapes ]): # Make sure input is matches output of signal.peak_prominences prominence_data = (np.array(prominences, dtype=np.float64), np.array(left_bases, dtype=np.intp), np.array(right_bases, dtype=np.intp)) # Test for correct exception if i < 3: match = "prominence data is invalid for peak" else: match = "arrays in `prominence_data` must have the same shape" with raises(ValueError, match=match): peak_widths(x, peak, prominence_data=prominence_data) @pytest.mark.filterwarnings("ignore:some peaks have a width of 0") def test_intersection_rules(self): """Test if x == eval_height counts as an intersection.""" # Flatt peak with two possible intersection points if evaluated at 1 x = [0, 1, 2, 1, 3, 3, 3, 1, 2, 1, 0] # relative height is 0 -> width is 0 as well, raises warning assert_allclose(peak_widths(x, peaks=[5], rel_height=0), [(0.,), (3.,), (5.,), (5.,)]) # width_height == x counts as intersection -> nearest 1 is chosen assert_allclose(peak_widths(x, peaks=[5], rel_height=2/3), [(4.,), (1.,), (3.,), (7.,)]) def test_unpack_condition_args(): """ Verify parsing of condition arguments for `scipy.signal.find_peaks` function. """ x = np.arange(10) amin_true = x amax_true = amin_true + 10 peaks = amin_true[1::2] # Test unpacking with None or interval assert_((None, None) == _unpack_condition_args((None, None), x, peaks)) assert_((1, None) == _unpack_condition_args(1, x, peaks)) assert_((1, None) == _unpack_condition_args((1, None), x, peaks)) assert_((None, 2) == _unpack_condition_args((None, 2), x, peaks)) assert_((3., 4.5) == _unpack_condition_args((3., 4.5), x, peaks)) # Test if borders are correctly reduced with `peaks` amin_calc, amax_calc = _unpack_condition_args((amin_true, amax_true), x, peaks) assert_equal(amin_calc, amin_true[peaks]) assert_equal(amax_calc, amax_true[peaks]) # Test raises if array borders don't match x with raises(ValueError, match="array size of lower"): _unpack_condition_args(amin_true, np.arange(11), peaks) with raises(ValueError, match="array size of upper"): _unpack_condition_args((None, amin_true), np.arange(11), peaks) class TestFindPeaks: # Keys of optionally returned properties property_keys = {'peak_heights', 'left_thresholds', 'right_thresholds', 'prominences', 'left_bases', 'right_bases', 'widths', 'width_heights', 'left_ips', 'right_ips'} def test_constant(self): """ Test behavior for signal without local maxima. """ open_interval = (None, None) peaks, props = find_peaks(np.ones(10), height=open_interval, threshold=open_interval, prominence=open_interval, width=open_interval) assert_(peaks.size == 0) for key in self.property_keys: assert_(props[key].size == 0) def test_plateau_size(self): """ Test plateau size condition for peaks. """ # Prepare signal with peaks with peak_height == plateau_size plateau_sizes = np.array([1, 2, 3, 4, 8, 20, 111]) x = np.zeros(plateau_sizes.size * 2 + 1) x[1::2] = plateau_sizes repeats = np.ones(x.size, dtype=int) repeats[1::2] = x[1::2] x = np.repeat(x, repeats) # Test full output peaks, props = find_peaks(x, plateau_size=(None, None)) assert_equal(peaks, [1, 3, 7, 11, 18, 33, 100]) assert_equal(props["plateau_sizes"], plateau_sizes) assert_equal(props["left_edges"], peaks - (plateau_sizes - 1) // 2) assert_equal(props["right_edges"], peaks + plateau_sizes // 2) # Test conditions assert_equal(find_peaks(x, plateau_size=4)[0], [11, 18, 33, 100]) assert_equal(find_peaks(x, plateau_size=(None, 3.5))[0], [1, 3, 7]) assert_equal(find_peaks(x, plateau_size=(5, 50))[0], [18, 33]) def test_height_condition(self): """ Test height condition for peaks. """ x = (0., 1/3, 0., 2.5, 0, 4., 0) peaks, props = find_peaks(x, height=(None, None)) assert_equal(peaks, np.array([1, 3, 5])) assert_equal(props['peak_heights'], np.array([1/3, 2.5, 4.])) assert_equal(find_peaks(x, height=0.5)[0], np.array([3, 5])) assert_equal(find_peaks(x, height=(None, 3))[0], np.array([1, 3])) assert_equal(find_peaks(x, height=(2, 3))[0], np.array([3])) def test_threshold_condition(self): """ Test threshold condition for peaks. """ x = (0, 2, 1, 4, -1) peaks, props = find_peaks(x, threshold=(None, None)) assert_equal(peaks, np.array([1, 3])) assert_equal(props['left_thresholds'], np.array([2, 3])) assert_equal(props['right_thresholds'], np.array([1, 5])) assert_equal(find_peaks(x, threshold=2)[0], np.array([3])) assert_equal(find_peaks(x, threshold=3.5)[0], np.array([])) assert_equal(find_peaks(x, threshold=(None, 5))[0], np.array([1, 3])) assert_equal(find_peaks(x, threshold=(None, 4))[0], np.array([1])) assert_equal(find_peaks(x, threshold=(2, 4))[0], np.array([])) def test_distance_condition(self): """ Test distance condition for peaks. """ # Peaks of different height with constant distance 3 peaks_all = np.arange(1, 21, 3) x = np.zeros(21) x[peaks_all] += np.linspace(1, 2, peaks_all.size) # Test if peaks with "minimal" distance are still selected (distance = 3) assert_equal(find_peaks(x, distance=3)[0], peaks_all) # Select every second peak (distance > 3) peaks_subset = find_peaks(x, distance=3.0001)[0] # Test if peaks_subset is subset of peaks_all assert_( np.setdiff1d(peaks_subset, peaks_all, assume_unique=True).size == 0 ) # Test if every second peak was removed assert_equal(np.diff(peaks_subset), 6) # Test priority of peak removal x = [-2, 1, -1, 0, -3] peaks_subset = find_peaks(x, distance=10)[0] # use distance > x size assert_(peaks_subset.size == 1 and peaks_subset[0] == 1) def test_prominence_condition(self): """ Test prominence condition for peaks. """ x = np.linspace(0, 10, 100) peaks_true = np.arange(1, 99, 2) offset = np.linspace(1, 10, peaks_true.size) x[peaks_true] += offset prominences = x[peaks_true] - x[peaks_true + 1] interval = (3, 9) keep = np.nonzero( (interval[0] <= prominences) & (prominences <= interval[1])) peaks_calc, properties = find_peaks(x, prominence=interval) assert_equal(peaks_calc, peaks_true[keep]) assert_equal(properties['prominences'], prominences[keep]) assert_equal(properties['left_bases'], 0) assert_equal(properties['right_bases'], peaks_true[keep] + 1) def test_width_condition(self): """ Test width condition for peaks. """ x = np.array([1, 0, 1, 2, 1, 0, -1, 4, 0]) peaks, props = find_peaks(x, width=(None, 2), rel_height=0.75) assert_equal(peaks.size, 1) assert_equal(peaks, 7) assert_allclose(props['widths'], 1.35) assert_allclose(props['width_heights'], 1.) assert_allclose(props['left_ips'], 6.4) assert_allclose(props['right_ips'], 7.75) def test_properties(self): """ Test returned properties. """ open_interval = (None, None) x = [0, 1, 0, 2, 1.5, 0, 3, 0, 5, 9] peaks, props = find_peaks(x, height=open_interval, threshold=open_interval, prominence=open_interval, width=open_interval) assert_(len(props) == len(self.property_keys)) for key in self.property_keys: assert_(peaks.size == props[key].size) def test_raises(self): """ Test exceptions raised by function. """ with raises(ValueError, match="1-D array"): find_peaks(np.array(1)) with raises(ValueError, match="1-D array"): find_peaks(np.ones((2, 2))) with raises(ValueError, match="distance"): find_peaks(np.arange(10), distance=-1) @pytest.mark.filterwarnings("ignore:some peaks have a prominence of 0", "ignore:some peaks have a width of 0") def test_wlen_smaller_plateau(self): """ Test behavior of prominence and width calculation if the given window length is smaller than a peak's plateau size. Regression test for gh-9110. """ peaks, props = find_peaks([0, 1, 1, 1, 0], prominence=(None, None), width=(None, None), wlen=2) assert_equal(peaks, 2) assert_equal(props["prominences"], 0) assert_equal(props["widths"], 0) assert_equal(props["width_heights"], 1) for key in ("left_bases", "right_bases", "left_ips", "right_ips"): assert_equal(props[key], peaks) class TestFindPeaksCwt: def test_find_peaks_exact(self): """ Generate a series of gaussians and attempt to find the peak locations. """ sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0] num_points = 500 test_data, act_locs = _gen_gaussians_even(sigmas, num_points) widths = np.arange(0.1, max(sigmas)) found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=0, min_length=None) np.testing.assert_array_equal(found_locs, act_locs, "Found maximum locations did not equal those expected") def test_find_peaks_withnoise(self): """ Verify that peak locations are (approximately) found for a series of gaussians with added noise. """ sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0] num_points = 500 test_data, act_locs = _gen_gaussians_even(sigmas, num_points) widths = np.arange(0.1, max(sigmas)) noise_amp = 0.07 np.random.seed(18181911) test_data += (np.random.rand(num_points) - 0.5)*(2*noise_amp) found_locs = find_peaks_cwt(test_data, widths, min_length=15, gap_thresh=1, min_snr=noise_amp / 5) np.testing.assert_equal(len(found_locs), len(act_locs), 'Different number' + 'of peaks found than expected') diffs = np.abs(found_locs - act_locs) max_diffs = np.array(sigmas) / 5 np.testing.assert_array_less(diffs, max_diffs, 'Maximum location differed' + 'by more than %s' % (max_diffs)) def test_find_peaks_nopeak(self): """ Verify that no peak is found in data that's just noise. """ noise_amp = 1.0 num_points = 100 np.random.seed(181819141) test_data = (np.random.rand(num_points) - 0.5)*(2*noise_amp) widths = np.arange(10, 50) found_locs = find_peaks_cwt(test_data, widths, min_snr=5, noise_perc=30) np.testing.assert_equal(len(found_locs), 0) def test_find_peaks_window_size(self): """ Verify that window_size is passed correctly to private function and affects the result. """ sigmas = [2.0, 2.0] num_points = 1000 test_data, act_locs = _gen_gaussians_even(sigmas, num_points) widths = np.arange(0.1, max(sigmas), 0.2) noise_amp = 0.05 np.random.seed(18181911) test_data += (np.random.rand(num_points) - 0.5)*(2*noise_amp) # Possibly contrived negative region to throw off peak finding # when window_size is too large test_data[250:320] -= 1 found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=3, min_length=None, window_size=None) with pytest.raises(AssertionError): assert found_locs.size == act_locs.size found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=3, min_length=None, window_size=20) assert found_locs.size == act_locs.size def test_find_peaks_with_one_width(self): """ Verify that the `width` argument in `find_peaks_cwt` can be a float """ xs = np.arange(0, np.pi, 0.05) test_data = np.sin(xs) widths = 1 found_locs = find_peaks_cwt(test_data, widths) np.testing.assert_equal(found_locs, 32)