# Code adapted from "upfirdn" python library with permission: # # Copyright (c) 2009, Motorola, Inc # # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Motorola nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np from itertools import product from numpy.testing import assert_equal, assert_allclose from pytest import raises as assert_raises import pytest from scipy.signal import upfirdn, firwin from scipy.signal._upfirdn import _output_len, _upfirdn_modes from scipy.signal._upfirdn_apply import _pad_test def upfirdn_naive(x, h, up=1, down=1): """Naive upfirdn processing in Python. Note: arg order (x, h) differs to facilitate apply_along_axis use. """ h = np.asarray(h) out = np.zeros(len(x) * up, x.dtype) out[::up] = x out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)] return out class UpFIRDnCase: """Test _UpFIRDn object""" def __init__(self, up, down, h, x_dtype): self.up = up self.down = down self.h = np.atleast_1d(h) self.x_dtype = x_dtype self.rng = np.random.RandomState(17) def __call__(self): # tiny signal self.scrub(np.ones(1, self.x_dtype)) # ones self.scrub(np.ones(10, self.x_dtype)) # ones # randn x = self.rng.randn(10).astype(self.x_dtype) if self.x_dtype in (np.complex64, np.complex128): x += 1j * self.rng.randn(10) self.scrub(x) # ramp self.scrub(np.arange(10).astype(self.x_dtype)) # 3D, random size = (2, 3, 5) x = self.rng.randn(*size).astype(self.x_dtype) if self.x_dtype in (np.complex64, np.complex128): x += 1j * self.rng.randn(*size) for axis in range(len(size)): self.scrub(x, axis=axis) x = x[:, ::2, 1::3].T for axis in range(len(size)): self.scrub(x, axis=axis) def scrub(self, x, axis=-1): yr = np.apply_along_axis(upfirdn_naive, axis, x, self.h, self.up, self.down) want_len = _output_len(len(self.h), x.shape[axis], self.up, self.down) assert yr.shape[axis] == want_len y = upfirdn(self.h, x, self.up, self.down, axis=axis) assert y.shape[axis] == want_len assert y.shape == yr.shape dtypes = (self.h.dtype, x.dtype) if all(d == np.complex64 for d in dtypes): assert_equal(y.dtype, np.complex64) elif np.complex64 in dtypes and np.float32 in dtypes: assert_equal(y.dtype, np.complex64) elif all(d == np.float32 for d in dtypes): assert_equal(y.dtype, np.float32) elif np.complex128 in dtypes or np.complex64 in dtypes: assert_equal(y.dtype, np.complex128) else: assert_equal(y.dtype, np.float64) assert_allclose(yr, y) _UPFIRDN_TYPES = (int, np.float32, np.complex64, float, complex) class TestUpfirdn: def test_valid_input(self): assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1 assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1 assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1) @pytest.mark.parametrize('len_h', [1, 2, 3, 4, 5]) @pytest.mark.parametrize('len_x', [1, 2, 3, 4, 5]) def test_singleton(self, len_h, len_x): # gh-9844: lengths producing expected outputs h = np.zeros(len_h) h[len_h // 2] = 1. # make h a delta x = np.ones(len_x) y = upfirdn(h, x, 1, 1) want = np.pad(x, (len_h // 2, (len_h - 1) // 2), 'constant') assert_allclose(y, want) def test_shift_x(self): # gh-9844: shifted x can change values? y = upfirdn([1, 1], [1.], 1, 1) assert_allclose(y, [1, 1]) # was [0, 1] in the issue y = upfirdn([1, 1], [0., 1.], 1, 1) assert_allclose(y, [0, 1, 1]) # A bunch of lengths/factors chosen because they exposed differences # between the "old way" and new way of computing length, and then # got `expected` from MATLAB @pytest.mark.parametrize('len_h, len_x, up, down, expected', [ (2, 2, 5, 2, [1, 0, 0, 0]), (2, 3, 6, 3, [1, 0, 1, 0, 1]), (2, 4, 4, 3, [1, 0, 0, 0, 1]), (3, 2, 6, 2, [1, 0, 0, 1, 0]), (4, 11, 3, 5, [1, 0, 0, 1, 0, 0, 1]), ]) def test_length_factors(self, len_h, len_x, up, down, expected): # gh-9844: weird factors h = np.zeros(len_h) h[0] = 1. x = np.ones(len_x) y = upfirdn(h, x, up, down) assert_allclose(y, expected) @pytest.mark.parametrize('down, want_len', [ # lengths from MATLAB (2, 5015), (11, 912), (79, 127), ]) def test_vs_convolve(self, down, want_len): # Check that up=1.0 gives same answer as convolve + slicing random_state = np.random.RandomState(17) try_types = (int, np.float32, np.complex64, float, complex) size = 10000 for dtype in try_types: x = random_state.randn(size).astype(dtype) if dtype in (np.complex64, np.complex128): x += 1j * random_state.randn(size) h = firwin(31, 1. / down, window='hamming') yl = upfirdn_naive(x, h, 1, down) y = upfirdn(h, x, up=1, down=down) assert y.shape == (want_len,) assert yl.shape[0] == y.shape[0] assert_allclose(yl, y, atol=1e-7, rtol=1e-7) @pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES) @pytest.mark.parametrize('h', (1., 1j)) @pytest.mark.parametrize('up, down', [(1, 1), (2, 2), (3, 2), (2, 3)]) def test_vs_naive_delta(self, x_dtype, h, up, down): UpFIRDnCase(up, down, h, x_dtype)() @pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES) @pytest.mark.parametrize('h_dtype', _UPFIRDN_TYPES) @pytest.mark.parametrize('p_max, q_max', list(product((10, 100), (10, 100)))) def test_vs_naive(self, x_dtype, h_dtype, p_max, q_max): tests = self._random_factors(p_max, q_max, h_dtype, x_dtype) for test in tests: test() def _random_factors(self, p_max, q_max, h_dtype, x_dtype): n_rep = 3 longest_h = 25 random_state = np.random.RandomState(17) tests = [] for _ in range(n_rep): # Randomize the up/down factors somewhat p_add = q_max if p_max > q_max else 1 q_add = p_max if q_max > p_max else 1 p = random_state.randint(p_max) + p_add q = random_state.randint(q_max) + q_add # Generate random FIR coefficients len_h = random_state.randint(longest_h) + 1 h = np.atleast_1d(random_state.randint(len_h)) h = h.astype(h_dtype) if h_dtype == complex: h += 1j * random_state.randint(len_h) tests.append(UpFIRDnCase(p, q, h, x_dtype)) return tests @pytest.mark.parametrize('mode', _upfirdn_modes) def test_extensions(self, mode): """Test vs. manually computed results for modes not in numpy's pad.""" x = np.array([1, 2, 3, 1], dtype=float) npre, npost = 6, 6 y = _pad_test(x, npre=npre, npost=npost, mode=mode) if mode == 'antisymmetric': y_expected = np.asarray( [3, 1, -1, -3, -2, -1, 1, 2, 3, 1, -1, -3, -2, -1, 1, 2]) elif mode == 'antireflect': y_expected = np.asarray( [1, 2, 3, 1, -1, 0, 1, 2, 3, 1, -1, 0, 1, 2, 3, 1]) elif mode == 'smooth': y_expected = np.asarray( [-5, -4, -3, -2, -1, 0, 1, 2, 3, 1, -1, -3, -5, -7, -9, -11]) elif mode == "line": lin_slope = (x[-1] - x[0]) / (len(x) - 1) left = x[0] + np.arange(-npre, 0, 1) * lin_slope right = x[-1] + np.arange(1, npost + 1) * lin_slope y_expected = np.concatenate((left, x, right)) else: y_expected = np.pad(x, (npre, npost), mode=mode) assert_allclose(y, y_expected) @pytest.mark.parametrize( 'size, h_len, mode, dtype', product( [8], [4, 5, 26], # include cases with h_len > 2*size _upfirdn_modes, [np.float32, np.float64, np.complex64, np.complex128], ) ) def test_modes(self, size, h_len, mode, dtype): random_state = np.random.RandomState(5) x = random_state.randn(size).astype(dtype) if dtype in (np.complex64, np.complex128): x += 1j * random_state.randn(size) h = np.arange(1, 1 + h_len, dtype=x.real.dtype) y = upfirdn(h, x, up=1, down=1, mode=mode) # expected result: pad the input, filter with zero padding, then crop npad = h_len - 1 if mode in ['antisymmetric', 'antireflect', 'smooth', 'line']: # use _pad_test test function for modes not supported by np.pad. xpad = _pad_test(x, npre=npad, npost=npad, mode=mode) else: xpad = np.pad(x, npad, mode=mode) ypad = upfirdn(h, xpad, up=1, down=1, mode='constant') y_expected = ypad[npad:-npad] atol = rtol = np.finfo(dtype).eps * 1e2 assert_allclose(y, y_expected, atol=atol, rtol=rtol)