import numpy as np from numpy.testing import assert_equal, \ assert_array_equal, assert_array_almost_equal, assert_array_less, assert_ from scipy.signal import wavelets class TestWavelets: def test_qmf(self): assert_array_equal(wavelets.qmf([1, 1]), [1, -1]) def test_daub(self): for i in range(1, 15): assert_equal(len(wavelets.daub(i)), i * 2) def test_cascade(self): for J in range(1, 7): for i in range(1, 5): lpcoef = wavelets.daub(i) k = len(lpcoef) x, phi, psi = wavelets.cascade(lpcoef, J) assert_(len(x) == len(phi) == len(psi)) assert_equal(len(x), (k - 1) * 2 ** J) def test_morlet(self): x = wavelets.morlet(50, 4.1, complete=True) y = wavelets.morlet(50, 4.1, complete=False) # Test if complete and incomplete wavelet have same lengths: assert_equal(len(x), len(y)) # Test if complete wavelet is less than incomplete wavelet: assert_array_less(x, y) x = wavelets.morlet(10, 50, complete=False) y = wavelets.morlet(10, 50, complete=True) # For large widths complete and incomplete wavelets should be # identical within numerical precision: assert_equal(x, y) # miscellaneous tests: x = np.array([1.73752399e-09 + 9.84327394e-25j, 6.49471756e-01 + 0.00000000e+00j, 1.73752399e-09 - 9.84327394e-25j]) y = wavelets.morlet(3, w=2, complete=True) assert_array_almost_equal(x, y) x = np.array([2.00947715e-09 + 9.84327394e-25j, 7.51125544e-01 + 0.00000000e+00j, 2.00947715e-09 - 9.84327394e-25j]) y = wavelets.morlet(3, w=2, complete=False) assert_array_almost_equal(x, y, decimal=2) x = wavelets.morlet(10000, s=4, complete=True) y = wavelets.morlet(20000, s=8, complete=True)[5000:15000] assert_array_almost_equal(x, y, decimal=2) x = wavelets.morlet(10000, s=4, complete=False) assert_array_almost_equal(y, x, decimal=2) y = wavelets.morlet(20000, s=8, complete=False)[5000:15000] assert_array_almost_equal(x, y, decimal=2) x = wavelets.morlet(10000, w=3, s=5, complete=True) y = wavelets.morlet(20000, w=3, s=10, complete=True)[5000:15000] assert_array_almost_equal(x, y, decimal=2) x = wavelets.morlet(10000, w=3, s=5, complete=False) assert_array_almost_equal(y, x, decimal=2) y = wavelets.morlet(20000, w=3, s=10, complete=False)[5000:15000] assert_array_almost_equal(x, y, decimal=2) x = wavelets.morlet(10000, w=7, s=10, complete=True) y = wavelets.morlet(20000, w=7, s=20, complete=True)[5000:15000] assert_array_almost_equal(x, y, decimal=2) x = wavelets.morlet(10000, w=7, s=10, complete=False) assert_array_almost_equal(x, y, decimal=2) y = wavelets.morlet(20000, w=7, s=20, complete=False)[5000:15000] assert_array_almost_equal(x, y, decimal=2) def test_morlet2(self): w = wavelets.morlet2(1.0, 0.5) expected = (np.pi**(-0.25) * np.sqrt(1/0.5)).astype(complex) assert_array_equal(w, expected) lengths = [5, 11, 15, 51, 101] for length in lengths: w = wavelets.morlet2(length, 1.0) assert_(len(w) == length) max_loc = np.argmax(w) assert_(max_loc == (length // 2)) points = 100 w = abs(wavelets.morlet2(points, 2.0)) half_vec = np.arange(0, points // 2) assert_array_almost_equal(w[half_vec], w[-(half_vec + 1)]) x = np.array([5.03701224e-09 + 2.46742437e-24j, 1.88279253e+00 + 0.00000000e+00j, 5.03701224e-09 - 2.46742437e-24j]) y = wavelets.morlet2(3, s=1/(2*np.pi), w=2) assert_array_almost_equal(x, y) def test_ricker(self): w = wavelets.ricker(1.0, 1) expected = 2 / (np.sqrt(3 * 1.0) * (np.pi ** 0.25)) assert_array_equal(w, expected) lengths = [5, 11, 15, 51, 101] for length in lengths: w = wavelets.ricker(length, 1.0) assert_(len(w) == length) max_loc = np.argmax(w) assert_(max_loc == (length // 2)) points = 100 w = wavelets.ricker(points, 2.0) half_vec = np.arange(0, points // 2) #Wavelet should be symmetric assert_array_almost_equal(w[half_vec], w[-(half_vec + 1)]) #Check zeros aas = [5, 10, 15, 20, 30] points = 99 for a in aas: w = wavelets.ricker(points, a) vec = np.arange(0, points) - (points - 1.0) / 2 exp_zero1 = np.argmin(np.abs(vec - a)) exp_zero2 = np.argmin(np.abs(vec + a)) assert_array_almost_equal(w[exp_zero1], 0) assert_array_almost_equal(w[exp_zero2], 0) def test_cwt(self): widths = [1.0] delta_wavelet = lambda s, t: np.array([1]) len_data = 100 test_data = np.sin(np.pi * np.arange(0, len_data) / 10.0) #Test delta function input gives same data as output cwt_dat = wavelets.cwt(test_data, delta_wavelet, widths) assert_(cwt_dat.shape == (len(widths), len_data)) assert_array_almost_equal(test_data, cwt_dat.flatten()) #Check proper shape on output widths = [1, 3, 4, 5, 10] cwt_dat = wavelets.cwt(test_data, wavelets.ricker, widths) assert_(cwt_dat.shape == (len(widths), len_data)) widths = [len_data * 10] #Note: this wavelet isn't defined quite right, but is fine for this test flat_wavelet = lambda l, w: np.full(w, 1 / w) cwt_dat = wavelets.cwt(test_data, flat_wavelet, widths) assert_array_almost_equal(cwt_dat, np.mean(test_data))