import scipy.sparse.linalg as la import scipy.io as io import numpy as np import sys #problem = "SPARSKIT/drivcav/e05r0100" problem = "SPARSKIT/drivcav/e05r0200" #problem = "Harwell-Boeing/sherman/sherman1" #problem = "misc/hamm/add32" mm = np.lib._datasource.Repository('ftp://math.nist.gov/pub/MatrixMarket2/') f = mm.open('%s.mtx.gz' % problem) Am = io.mmread(f).tocsr() f.close() f = mm.open('%s_rhs1.mtx.gz' % problem) b = np.array(io.mmread(f)).ravel() f.close() count = [0] def matvec(v): count[0] += 1 sys.stderr.write('%d\r' % count[0]) return Am*v A = la.LinearOperator(matvec=matvec, shape=Am.shape, dtype=Am.dtype) M = 100 print("MatrixMarket problem %s" % problem) print("Invert %d x %d matrix; nnz = %d" % (Am.shape[0], Am.shape[1], Am.nnz)) count[0] = 0 x0, info = la.gmres(A, b, restrt=M, tol=1e-14) count_0 = count[0] err0 = np.linalg.norm(Am*x0 - b) / np.linalg.norm(b) print("GMRES(%d):" % M, count_0, "matvecs, residual", err0) if info != 0: print("Didn't converge") count[0] = 0 x1, info = la.lgmres(A, b, inner_m=M-6*2, outer_k=6, tol=1e-14) count_1 = count[0] err1 = np.linalg.norm(Am*x1 - b) / np.linalg.norm(b) print("LGMRES(%d,6) [same memory req.]:" % (M-2*6), count_1, "matvecs, residual:", err1) if info != 0: print("Didn't converge") count[0] = 0 x2, info = la.lgmres(A, b, inner_m=M-6, outer_k=6, tol=1e-14) count_2 = count[0] err2 = np.linalg.norm(Am*x2 - b) / np.linalg.norm(b) print("LGMRES(%d,6) [same subspace size]:" % (M-6), count_2, "matvecs, residual:", err2) if info != 0: print("Didn't converge")