#!/usr/bin/env python """Tests for the linalg.isolve.gcrotmk module """ from numpy.testing import (assert_, assert_allclose, assert_equal, suppress_warnings) import numpy as np from numpy import zeros, array, allclose from scipy.linalg import norm from scipy.sparse import csr_matrix, eye, rand from scipy.sparse.linalg.interface import LinearOperator from scipy.sparse.linalg import splu from scipy.sparse.linalg.isolve import gcrotmk, gmres Am = csr_matrix(array([[-2,1,0,0,0,9], [1,-2,1,0,5,0], [0,1,-2,1,0,0], [0,0,1,-2,1,0], [0,3,0,1,-2,1], [1,0,0,0,1,-2]])) b = array([1,2,3,4,5,6]) count = [0] def matvec(v): count[0] += 1 return Am*v A = LinearOperator(matvec=matvec, shape=Am.shape, dtype=Am.dtype) def do_solve(**kw): count[0] = 0 with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x0, flag = gcrotmk(A, b, x0=zeros(A.shape[0]), tol=1e-14, **kw) count_0 = count[0] assert_(allclose(A*x0, b, rtol=1e-12, atol=1e-12), norm(A*x0-b)) return x0, count_0 class TestGCROTMK: def test_preconditioner(self): # Check that preconditioning works pc = splu(Am.tocsc()) M = LinearOperator(matvec=pc.solve, shape=A.shape, dtype=A.dtype) x0, count_0 = do_solve() x1, count_1 = do_solve(M=M) assert_equal(count_1, 3) assert_(count_1 < count_0/2) assert_(allclose(x1, x0, rtol=1e-14)) def test_arnoldi(self): np.random.seed(1) A = eye(2000) + rand(2000, 2000, density=5e-4) b = np.random.rand(2000) # The inner arnoldi should be equivalent to gmres with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x0, flag0 = gcrotmk(A, b, x0=zeros(A.shape[0]), m=15, k=0, maxiter=1) x1, flag1 = gmres(A, b, x0=zeros(A.shape[0]), restart=15, maxiter=1) assert_equal(flag0, 1) assert_equal(flag1, 1) assert np.linalg.norm(A.dot(x0) - b) > 1e-3 assert_allclose(x0, x1) def test_cornercase(self): np.random.seed(1234) # Rounding error may prevent convergence with tol=0 --- ensure # that the return values in this case are correct, and no # exceptions are raised for n in [3, 5, 10, 100]: A = 2*eye(n) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") b = np.ones(n) x, info = gcrotmk(A, b, maxiter=10) assert_equal(info, 0) assert_allclose(A.dot(x) - b, 0, atol=1e-14) x, info = gcrotmk(A, b, tol=0, maxiter=10) if info == 0: assert_allclose(A.dot(x) - b, 0, atol=1e-14) b = np.random.rand(n) x, info = gcrotmk(A, b, maxiter=10) assert_equal(info, 0) assert_allclose(A.dot(x) - b, 0, atol=1e-14) x, info = gcrotmk(A, b, tol=0, maxiter=10) if info == 0: assert_allclose(A.dot(x) - b, 0, atol=1e-14) def test_nans(self): A = eye(3, format='lil') A[1,1] = np.nan b = np.ones(3) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x, info = gcrotmk(A, b, tol=0, maxiter=10) assert_equal(info, 1) def test_truncate(self): np.random.seed(1234) A = np.random.rand(30, 30) + np.eye(30) b = np.random.rand(30) for truncate in ['oldest', 'smallest']: with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x, info = gcrotmk(A, b, m=10, k=10, truncate=truncate, tol=1e-4, maxiter=200) assert_equal(info, 0) assert_allclose(A.dot(x) - b, 0, atol=1e-3) def test_CU(self): for discard_C in (True, False): # Check that C,U behave as expected CU = [] x0, count_0 = do_solve(CU=CU, discard_C=discard_C) assert_(len(CU) > 0) assert_(len(CU) <= 6) if discard_C: for c, u in CU: assert_(c is None) # should converge immediately x1, count_1 = do_solve(CU=CU, discard_C=discard_C) if discard_C: assert_equal(count_1, 2 + len(CU)) else: assert_equal(count_1, 3) assert_(count_1 <= count_0/2) assert_allclose(x1, x0, atol=1e-14) def test_denormals(self): # Check that no warnings are emitted if the matrix contains # numbers for which 1/x has no float representation, and that # the solver behaves properly. A = np.array([[1, 2], [3, 4]], dtype=float) A *= 100 * np.nextafter(0, 1) b = np.array([1, 1]) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") xp, info = gcrotmk(A, b) if info == 0: assert_allclose(A.dot(xp), b)