""" Test functions for the sparse.linalg.isolve module """ import itertools import platform import sys import numpy as np from numpy.testing import (assert_equal, assert_array_equal, assert_, assert_allclose, suppress_warnings) import pytest from pytest import raises as assert_raises from numpy import zeros, arange, array, ones, eye, iscomplexobj from scipy.linalg import norm from scipy.sparse import spdiags, csr_matrix, SparseEfficiencyWarning from scipy.sparse.linalg import LinearOperator, aslinearoperator from scipy.sparse.linalg.isolve import cg, cgs, bicg, bicgstab, gmres, qmr, minres, lgmres, gcrotmk # TODO check that method preserve shape and type # TODO test both preconditioner methods class Case: def __init__(self, name, A, b=None, skip=None, nonconvergence=None): self.name = name self.A = A if b is None: self.b = arange(A.shape[0], dtype=float) else: self.b = b if skip is None: self.skip = [] else: self.skip = skip if nonconvergence is None: self.nonconvergence = [] else: self.nonconvergence = nonconvergence def __repr__(self): return "<%s>" % self.name class IterativeParams: def __init__(self): # list of tuples (solver, symmetric, positive_definite ) solvers = [cg, cgs, bicg, bicgstab, gmres, qmr, minres, lgmres, gcrotmk] sym_solvers = [minres, cg] posdef_solvers = [cg] real_solvers = [minres] self.solvers = solvers # list of tuples (A, symmetric, positive_definite ) self.cases = [] # Symmetric and Positive Definite N = 40 data = ones((3,N)) data[0,:] = 2 data[1,:] = -1 data[2,:] = -1 Poisson1D = spdiags(data, [0,-1,1], N, N, format='csr') self.Poisson1D = Case("poisson1d", Poisson1D) self.cases.append(Case("poisson1d", Poisson1D)) # note: minres fails for single precision self.cases.append(Case("poisson1d", Poisson1D.astype('f'), skip=[minres])) # Symmetric and Negative Definite self.cases.append(Case("neg-poisson1d", -Poisson1D, skip=posdef_solvers)) # note: minres fails for single precision self.cases.append(Case("neg-poisson1d", (-Poisson1D).astype('f'), skip=posdef_solvers + [minres])) # Symmetric and Indefinite data = array([[6, -5, 2, 7, -1, 10, 4, -3, -8, 9]],dtype='d') RandDiag = spdiags(data, [0], 10, 10, format='csr') self.cases.append(Case("rand-diag", RandDiag, skip=posdef_solvers)) self.cases.append(Case("rand-diag", RandDiag.astype('f'), skip=posdef_solvers)) # Random real-valued np.random.seed(1234) data = np.random.rand(4, 4) self.cases.append(Case("rand", data, skip=posdef_solvers+sym_solvers)) self.cases.append(Case("rand", data.astype('f'), skip=posdef_solvers+sym_solvers)) # Random symmetric real-valued np.random.seed(1234) data = np.random.rand(4, 4) data = data + data.T self.cases.append(Case("rand-sym", data, skip=posdef_solvers)) self.cases.append(Case("rand-sym", data.astype('f'), skip=posdef_solvers)) # Random pos-def symmetric real np.random.seed(1234) data = np.random.rand(9, 9) data = np.dot(data.conj(), data.T) self.cases.append(Case("rand-sym-pd", data)) # note: minres fails for single precision self.cases.append(Case("rand-sym-pd", data.astype('f'), skip=[minres])) # Random complex-valued np.random.seed(1234) data = np.random.rand(4, 4) + 1j*np.random.rand(4, 4) self.cases.append(Case("rand-cmplx", data, skip=posdef_solvers+sym_solvers+real_solvers)) self.cases.append(Case("rand-cmplx", data.astype('F'), skip=posdef_solvers+sym_solvers+real_solvers)) # Random hermitian complex-valued np.random.seed(1234) data = np.random.rand(4, 4) + 1j*np.random.rand(4, 4) data = data + data.T.conj() self.cases.append(Case("rand-cmplx-herm", data, skip=posdef_solvers+real_solvers)) self.cases.append(Case("rand-cmplx-herm", data.astype('F'), skip=posdef_solvers+real_solvers)) # Random pos-def hermitian complex-valued np.random.seed(1234) data = np.random.rand(9, 9) + 1j*np.random.rand(9, 9) data = np.dot(data.conj(), data.T) self.cases.append(Case("rand-cmplx-sym-pd", data, skip=real_solvers)) self.cases.append(Case("rand-cmplx-sym-pd", data.astype('F'), skip=real_solvers)) # Non-symmetric and Positive Definite # # cgs, qmr, and bicg fail to converge on this one # -- algorithmic limitation apparently data = ones((2,10)) data[0,:] = 2 data[1,:] = -1 A = spdiags(data, [0,-1], 10, 10, format='csr') self.cases.append(Case("nonsymposdef", A, skip=sym_solvers+[cgs, qmr, bicg])) self.cases.append(Case("nonsymposdef", A.astype('F'), skip=sym_solvers+[cgs, qmr, bicg])) # Symmetric, non-pd, hitting cgs/bicg/bicgstab/qmr breakdown A = np.array([[0, 0, 0, 0, 0, 1, -1, -0, -0, -0, -0], [0, 0, 0, 0, 0, 2, -0, -1, -0, -0, -0], [0, 0, 0, 0, 0, 2, -0, -0, -1, -0, -0], [0, 0, 0, 0, 0, 2, -0, -0, -0, -1, -0], [0, 0, 0, 0, 0, 1, -0, -0, -0, -0, -1], [1, 2, 2, 2, 1, 0, -0, -0, -0, -0, -0], [-1, 0, 0, 0, 0, 0, -1, -0, -0, -0, -0], [0, -1, 0, 0, 0, 0, -0, -1, -0, -0, -0], [0, 0, -1, 0, 0, 0, -0, -0, -1, -0, -0], [0, 0, 0, -1, 0, 0, -0, -0, -0, -1, -0], [0, 0, 0, 0, -1, 0, -0, -0, -0, -0, -1]], dtype=float) b = np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], dtype=float) assert (A == A.T).all() self.cases.append(Case("sym-nonpd", A, b, skip=posdef_solvers, nonconvergence=[cgs,bicg,bicgstab,qmr])) params = IterativeParams() def check_maxiter(solver, case): A = case.A tol = 1e-12 b = case.b x0 = 0*b residuals = [] def callback(x): residuals.append(norm(b - case.A*x)) x, info = solver(A, b, x0=x0, tol=tol, maxiter=1, callback=callback) assert_equal(len(residuals), 1) assert_equal(info, 1) def test_maxiter(): case = params.Poisson1D for solver in params.solvers: if solver in case.skip: continue with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") check_maxiter(solver, case) def assert_normclose(a, b, tol=1e-8): residual = norm(a - b) tolerance = tol*norm(b) msg = "residual (%g) not smaller than tolerance %g" % (residual, tolerance) assert_(residual < tolerance, msg=msg) def check_convergence(solver, case): A = case.A if A.dtype.char in "dD": tol = 1e-8 else: tol = 1e-2 b = case.b x0 = 0*b x, info = solver(A, b, x0=x0, tol=tol) assert_array_equal(x0, 0*b) # ensure that x0 is not overwritten if solver not in case.nonconvergence: assert_equal(info,0) assert_normclose(A.dot(x), b, tol=tol) else: assert_(info != 0) assert_(np.linalg.norm(A.dot(x) - b) <= np.linalg.norm(b)) def test_convergence(): for solver in params.solvers: for case in params.cases: if solver in case.skip: continue with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") check_convergence(solver, case) def check_precond_dummy(solver, case): tol = 1e-8 def identity(b,which=None): """trivial preconditioner""" return b A = case.A M,N = A.shape spdiags([1.0/A.diagonal()], [0], M, N) b = case.b x0 = 0*b precond = LinearOperator(A.shape, identity, rmatvec=identity) if solver is qmr: x, info = solver(A, b, M1=precond, M2=precond, x0=x0, tol=tol) else: x, info = solver(A, b, M=precond, x0=x0, tol=tol) assert_equal(info,0) assert_normclose(A.dot(x), b, tol) A = aslinearoperator(A) A.psolve = identity A.rpsolve = identity x, info = solver(A, b, x0=x0, tol=tol) assert_equal(info,0) assert_normclose(A*x, b, tol=tol) def test_precond_dummy(): case = params.Poisson1D for solver in params.solvers: if solver in case.skip: continue with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") check_precond_dummy(solver, case) def check_precond_inverse(solver, case): tol = 1e-8 def inverse(b,which=None): """inverse preconditioner""" A = case.A if not isinstance(A, np.ndarray): A = A.todense() return np.linalg.solve(A, b) def rinverse(b,which=None): """inverse preconditioner""" A = case.A if not isinstance(A, np.ndarray): A = A.todense() return np.linalg.solve(A.T, b) matvec_count = [0] def matvec(b): matvec_count[0] += 1 return case.A.dot(b) def rmatvec(b): matvec_count[0] += 1 return case.A.T.dot(b) b = case.b x0 = 0*b A = LinearOperator(case.A.shape, matvec, rmatvec=rmatvec) precond = LinearOperator(case.A.shape, inverse, rmatvec=rinverse) # Solve with preconditioner matvec_count = [0] x, info = solver(A, b, M=precond, x0=x0, tol=tol) assert_equal(info, 0) assert_normclose(case.A.dot(x), b, tol) # Solution should be nearly instant assert_(matvec_count[0] <= 3, repr(matvec_count)) def test_precond_inverse(): case = params.Poisson1D for solver in params.solvers: if solver in case.skip: continue if solver is qmr: continue with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") check_precond_inverse(solver, case) def test_gmres_basic(): A = np.vander(np.arange(10) + 1)[:, ::-1] b = np.zeros(10) b[0] = 1 np.linalg.solve(A, b) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x_gm, err = gmres(A, b, restart=5, maxiter=1) assert_allclose(x_gm[0], 0.359, rtol=1e-2) def test_reentrancy(): non_reentrant = [cg, cgs, bicg, bicgstab, gmres, qmr] reentrant = [lgmres, minres, gcrotmk] for solver in reentrant + non_reentrant: with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") _check_reentrancy(solver, solver in reentrant) def _check_reentrancy(solver, is_reentrant): def matvec(x): A = np.array([[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]]) y, info = solver(A, x) assert_equal(info, 0) return y b = np.array([1, 1./2, 1./3]) op = LinearOperator((3, 3), matvec=matvec, rmatvec=matvec, dtype=b.dtype) if not is_reentrant: assert_raises(RuntimeError, solver, op, b) else: y, info = solver(op, b) assert_equal(info, 0) assert_allclose(y, [1, 1, 1]) @pytest.mark.parametrize("solver", [cg, cgs, bicg, bicgstab, gmres, qmr, lgmres, gcrotmk]) def test_atol(solver): # TODO: minres. It didn't historically use absolute tolerances, so # fixing it is less urgent. np.random.seed(1234) A = np.random.rand(10, 10) A = A.dot(A.T) + 10 * np.eye(10) b = 1e3 * np.random.rand(10) b_norm = np.linalg.norm(b) tols = np.r_[0, np.logspace(np.log10(1e-10), np.log10(1e2), 7), np.inf] # Check effect of badly scaled preconditioners M0 = np.random.randn(10, 10) M0 = M0.dot(M0.T) Ms = [None, 1e-6 * M0, 1e6 * M0] for M, tol, atol in itertools.product(Ms, tols, tols): if tol == 0 and atol == 0: continue if solver is qmr: if M is not None: M = aslinearoperator(M) M2 = aslinearoperator(np.eye(10)) else: M2 = None x, info = solver(A, b, M1=M, M2=M2, tol=tol, atol=atol) else: x, info = solver(A, b, M=M, tol=tol, atol=atol) assert_equal(info, 0) residual = A.dot(x) - b err = np.linalg.norm(residual) atol2 = tol * b_norm assert_(err <= max(atol, atol2)) @pytest.mark.parametrize("solver", [cg, cgs, bicg, bicgstab, gmres, qmr, minres, lgmres, gcrotmk]) def test_zero_rhs(solver): np.random.seed(1234) A = np.random.rand(10, 10) A = A.dot(A.T) + 10 * np.eye(10) b = np.zeros(10) tols = np.r_[np.logspace(np.log10(1e-10), np.log10(1e2), 7)] for tol in tols: with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x, info = solver(A, b, tol=tol) assert_equal(info, 0) assert_allclose(x, 0, atol=1e-15) x, info = solver(A, b, tol=tol, x0=ones(10)) assert_equal(info, 0) assert_allclose(x, 0, atol=tol) if solver is not minres: x, info = solver(A, b, tol=tol, atol=0, x0=ones(10)) if info == 0: assert_allclose(x, 0) x, info = solver(A, b, tol=tol, atol=tol) assert_equal(info, 0) assert_allclose(x, 0, atol=1e-300) x, info = solver(A, b, tol=tol, atol=0) assert_equal(info, 0) assert_allclose(x, 0, atol=1e-300) @pytest.mark.parametrize("solver", [ pytest.param(gmres, marks=pytest.mark.xfail(platform.machine() == 'aarch64' and sys.version_info[1] == 9, reason="gh-13019")), qmr, pytest.param(lgmres, marks=pytest.mark.xfail(platform.machine() == 'ppc64le', reason="fails on ppc64le")), pytest.param(cgs, marks=pytest.mark.xfail), pytest.param(bicg, marks=pytest.mark.xfail), pytest.param(bicgstab, marks=pytest.mark.xfail), pytest.param(gcrotmk, marks=pytest.mark.xfail)]) def test_maxiter_worsening(solver): # Check error does not grow (boundlessly) with increasing maxiter. # This can occur due to the solvers hitting close to breakdown, # which they should detect and halt as necessary. # cf. gh-9100 # Singular matrix, rhs numerically not in range A = np.array([[-0.1112795288033378, 0, 0, 0.16127952880333685], [0, -0.13627952880333782+6.283185307179586j, 0, 0], [0, 0, -0.13627952880333782-6.283185307179586j, 0], [0.1112795288033368, 0j, 0j, -0.16127952880333785]]) v = np.ones(4) best_error = np.inf tol = 7 if platform.machine() == 'aarch64' else 5 for maxiter in range(1, 20): x, info = solver(A, v, maxiter=maxiter, tol=1e-8, atol=0) if info == 0: assert_(np.linalg.norm(A.dot(x) - v) <= 1e-8*np.linalg.norm(v)) error = np.linalg.norm(A.dot(x) - v) best_error = min(best_error, error) # Check with slack assert_(error <= tol*best_error) @pytest.mark.parametrize("solver", [cg, cgs, bicg, bicgstab, gmres, qmr, minres, lgmres, gcrotmk]) def test_x0_working(solver): # Easy problem np.random.seed(1) n = 10 A = np.random.rand(n, n) A = A.dot(A.T) b = np.random.rand(n) x0 = np.random.rand(n) if solver is minres: kw = dict(tol=1e-6) else: kw = dict(atol=0, tol=1e-6) x, info = solver(A, b, **kw) assert_equal(info, 0) assert_(np.linalg.norm(A.dot(x) - b) <= 1e-6*np.linalg.norm(b)) x, info = solver(A, b, x0=x0, **kw) assert_equal(info, 0) assert_(np.linalg.norm(A.dot(x) - b) <= 1e-6*np.linalg.norm(b)) #------------------------------------------------------------------------------ class TestQMR: def test_leftright_precond(self): """Check that QMR works with left and right preconditioners""" from scipy.sparse.linalg.dsolve import splu from scipy.sparse.linalg.interface import LinearOperator n = 100 dat = ones(n) A = spdiags([-2*dat, 4*dat, -dat], [-1,0,1],n,n) b = arange(n,dtype='d') L = spdiags([-dat/2, dat], [-1,0], n, n) U = spdiags([4*dat, -dat], [0,1], n, n) with suppress_warnings() as sup: sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format") L_solver = splu(L) U_solver = splu(U) def L_solve(b): return L_solver.solve(b) def U_solve(b): return U_solver.solve(b) def LT_solve(b): return L_solver.solve(b,'T') def UT_solve(b): return U_solver.solve(b,'T') M1 = LinearOperator((n,n), matvec=L_solve, rmatvec=LT_solve) M2 = LinearOperator((n,n), matvec=U_solve, rmatvec=UT_solve) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x,info = qmr(A, b, tol=1e-8, maxiter=15, M1=M1, M2=M2) assert_equal(info,0) assert_normclose(A*x, b, tol=1e-8) class TestGMRES: def test_callback(self): def store_residual(r, rvec): rvec[rvec.nonzero()[0].max()+1] = r # Define, A,b A = csr_matrix(array([[-2,1,0,0,0,0],[1,-2,1,0,0,0],[0,1,-2,1,0,0],[0,0,1,-2,1,0],[0,0,0,1,-2,1],[0,0,0,0,1,-2]])) b = ones((A.shape[0],)) maxiter = 1 rvec = zeros(maxiter+1) rvec[0] = 1.0 callback = lambda r:store_residual(r, rvec) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x,flag = gmres(A, b, x0=zeros(A.shape[0]), tol=1e-16, maxiter=maxiter, callback=callback) # Expected output from SciPy 1.0.0 assert_allclose(rvec, array([1.0, 0.81649658092772603]), rtol=1e-10) # Test preconditioned callback M = 1e-3 * np.eye(A.shape[0]) rvec = zeros(maxiter+1) rvec[0] = 1.0 with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x, flag = gmres(A, b, M=M, tol=1e-16, maxiter=maxiter, callback=callback) # Expected output from SciPy 1.0.0 (callback has preconditioned residual!) assert_allclose(rvec, array([1.0, 1e-3 * 0.81649658092772603]), rtol=1e-10) def test_abi(self): # Check we don't segfault on gmres with complex argument A = eye(2) b = ones(2) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") r_x, r_info = gmres(A, b) r_x = r_x.astype(complex) x, info = gmres(A.astype(complex), b.astype(complex)) assert_(iscomplexobj(x)) assert_allclose(r_x, x) assert_(r_info == info) def test_atol_legacy(self): with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") # Check the strange legacy behavior: the tolerance is interpreted # as atol, but only for the initial residual A = eye(2) b = 1e-6 * ones(2) x, info = gmres(A, b, tol=1e-5) assert_array_equal(x, np.zeros(2)) A = eye(2) b = ones(2) x, info = gmres(A, b, tol=1e-5) assert_(np.linalg.norm(A.dot(x) - b) <= 1e-5*np.linalg.norm(b)) assert_allclose(x, b, atol=0, rtol=1e-8) rndm = np.random.RandomState(12345) A = rndm.rand(30, 30) b = 1e-6 * ones(30) x, info = gmres(A, b, tol=1e-7, restart=20) assert_(np.linalg.norm(A.dot(x) - b) > 1e-7) A = eye(2) b = 1e-10 * ones(2) x, info = gmres(A, b, tol=1e-8, atol=0) assert_(np.linalg.norm(A.dot(x) - b) <= 1e-8*np.linalg.norm(b)) def test_defective_precond_breakdown(self): # Breakdown due to defective preconditioner M = np.eye(3) M[2,2] = 0 b = np.array([0, 1, 1]) x = np.array([1, 0, 0]) A = np.diag([2, 3, 4]) x, info = gmres(A, b, x0=x, M=M, tol=1e-15, atol=0) # Should not return nans, nor terminate with false success assert_(not np.isnan(x).any()) if info == 0: assert_(np.linalg.norm(A.dot(x) - b) <= 1e-15*np.linalg.norm(b)) # The solution should be OK outside null space of M assert_allclose(M.dot(A.dot(x)), M.dot(b)) def test_defective_matrix_breakdown(self): # Breakdown due to defective matrix A = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 0]]) b = np.array([1, 0, 1]) x, info = gmres(A, b, tol=1e-8, atol=0) # Should not return nans, nor terminate with false success assert_(not np.isnan(x).any()) if info == 0: assert_(np.linalg.norm(A.dot(x) - b) <= 1e-8*np.linalg.norm(b)) # The solution should be OK outside null space of A assert_allclose(A.dot(A.dot(x)), A.dot(b)) def test_callback_type(self): # The legacy callback type changes meaning of 'maxiter' np.random.seed(1) A = np.random.rand(20, 20) b = np.random.rand(20) cb_count = [0] def pr_norm_cb(r): cb_count[0] += 1 assert_(isinstance(r, float)) def x_cb(x): cb_count[0] += 1 assert_(isinstance(x, np.ndarray)) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") # 2 iterations is not enough to solve the problem cb_count = [0] x, info = gmres(A, b, tol=1e-6, atol=0, callback=pr_norm_cb, maxiter=2, restart=50) assert info == 2 assert cb_count[0] == 2 # With `callback_type` specified, no warning should be raised cb_count = [0] x, info = gmres(A, b, tol=1e-6, atol=0, callback=pr_norm_cb, maxiter=2, restart=50, callback_type='legacy') assert info == 2 assert cb_count[0] == 2 # 2 restart cycles is enough to solve the problem cb_count = [0] x, info = gmres(A, b, tol=1e-6, atol=0, callback=pr_norm_cb, maxiter=2, restart=50, callback_type='pr_norm') assert info == 0 assert cb_count[0] > 2 # 2 restart cycles is enough to solve the problem cb_count = [0] x, info = gmres(A, b, tol=1e-6, atol=0, callback=x_cb, maxiter=2, restart=50, callback_type='x') assert info == 0 assert cb_count[0] == 2 def test_callback_x_monotonic(self): # Check that callback_type='x' gives monotonic norm decrease np.random.seed(1) A = np.random.rand(20, 20) + np.eye(20) b = np.random.rand(20) prev_r = [np.inf] count = [0] def x_cb(x): r = np.linalg.norm(A.dot(x) - b) assert r <= prev_r[0] prev_r[0] = r count[0] += 1 x, info = gmres(A, b, tol=1e-6, atol=0, callback=x_cb, maxiter=20, restart=10, callback_type='x') assert info == 20 assert count[0] == 21 x_cb(x)