import numpy as np from numpy.testing import (assert_, assert_array_equal, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_equal) import scipy.sparse import scipy.sparse.linalg from scipy.sparse.linalg import lsqr from time import time # Set up a test problem n = 35 G = np.eye(n) normal = np.random.normal norm = np.linalg.norm for jj in range(5): gg = normal(size=n) hh = gg * gg.T G += (hh + hh.T) * 0.5 G += normal(size=n) * normal(size=n) b = normal(size=n) tol = 1e-10 show = False maxit = None def test_basic(): b_copy = b.copy() xo, *_ = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit) assert_array_equal(b_copy, b) svx = np.linalg.solve(G, b) assert_allclose(xo, svx, atol=tol, rtol=tol) # Now the same but with damp > 0. # This is equivalent to solving the extented system: # ( G ) * x = ( b ) # ( damp*I ) ( 0 ) damp = 1.5 xo, *_ = lsqr( G, b, damp=damp, show=show, atol=tol, btol=tol, iter_lim=maxit) Gext = np.r_[G, damp * np.eye(G.shape[1])] bext = np.r_[b, np.zeros(G.shape[1])] svx, *_ = np.linalg.lstsq(Gext, bext, rcond=None) assert_allclose(xo, svx, atol=tol, rtol=tol) def test_gh_2466(): row = np.array([0, 0]) col = np.array([0, 1]) val = np.array([1, -1]) A = scipy.sparse.coo_matrix((val, (row, col)), shape=(1, 2)) b = np.asarray([4]) lsqr(A, b) def test_well_conditioned_problems(): # Test that sparse the lsqr solver returns the right solution # on various problems with different random seeds. # This is a non-regression test for a potential ZeroDivisionError # raised when computing the `test2` & `test3` convergence conditions. n = 10 A_sparse = scipy.sparse.eye(n, n) A_dense = A_sparse.toarray() with np.errstate(invalid='raise'): for seed in range(30): rng = np.random.RandomState(seed + 10) beta = rng.rand(n) beta[beta == 0] = 0.00001 # ensure that all the betas are not null b = A_sparse * beta[:, np.newaxis] output = lsqr(A_sparse, b, show=show) # Check that the termination condition corresponds to an approximate # solution to Ax = b assert_equal(output[1], 1) solution = output[0] # Check that we recover the ground truth solution assert_array_almost_equal(solution, beta) # Sanity check: compare to the dense array solver reference_solution = np.linalg.solve(A_dense, b).ravel() assert_array_almost_equal(solution, reference_solution) def test_b_shapes(): # Test b being a scalar. A = np.array([[1.0, 2.0]]) b = 3.0 x = lsqr(A, b)[0] assert_almost_equal(norm(A.dot(x) - b), 0) # Test b being a column vector. A = np.eye(10) b = np.ones((10, 1)) x = lsqr(A, b)[0] assert_almost_equal(norm(A.dot(x) - b.ravel()), 0) def test_initialization(): # Test the default setting is the same as zeros b_copy = b.copy() x_ref = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit) x0 = np.zeros(x_ref[0].shape) x = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit, x0=x0) assert_(np.all(b_copy == b)) assert_array_almost_equal(x_ref[0], x[0]) # Test warm-start with single iteration x0 = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=1)[0] x = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit, x0=x0) assert_array_almost_equal(x_ref[0], x[0]) assert_(np.all(b_copy == b)) if __name__ == "__main__": svx = np.linalg.solve(G, b) tic = time() X = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit) xo = X[0] phio = X[3] psio = X[7] k = X[2] chio = X[8] mg = np.amax(G - G.T) if mg > 1e-14: sym = 'No' else: sym = 'Yes' print('LSQR') print("Is linear operator symmetric? " + sym) print("n: %3g iterations: %3g" % (n, k)) print("Norms computed in %.2fs by LSQR" % (time() - tic)) print(" ||x|| %9.4e ||r|| %9.4e ||Ar|| %9.4e " % (chio, phio, psio)) print("Residual norms computed directly:") print(" ||x|| %9.4e ||r|| %9.4e ||Ar|| %9.4e" % (norm(xo), norm(G*xo - b), norm(G.T*(G*xo-b)))) print("Direct solution norms:") print(" ||x|| %9.4e ||r|| %9.4e " % (norm(svx), norm(G*svx - b))) print("") print(" || x_{direct} - x_{LSQR}|| %9.4e " % norm(svx-xo)) print("")