"""Test functions for the sparse.linalg.interface module """ from functools import partial from itertools import product import operator import pytest from pytest import raises as assert_raises, warns from numpy.testing import assert_, assert_equal import numpy as np import scipy.sparse as sparse from scipy.sparse.linalg import interface from scipy.sparse.sputils import matrix class TestLinearOperator: def setup_method(self): self.A = np.array([[1,2,3], [4,5,6]]) self.B = np.array([[1,2], [3,4], [5,6]]) self.C = np.array([[1,2], [3,4]]) def test_matvec(self): def get_matvecs(A): return [{ 'shape': A.shape, 'matvec': lambda x: np.dot(A, x).reshape(A.shape[0]), 'rmatvec': lambda x: np.dot(A.T.conj(), x).reshape(A.shape[1]) }, { 'shape': A.shape, 'matvec': lambda x: np.dot(A, x), 'rmatvec': lambda x: np.dot(A.T.conj(), x), 'rmatmat': lambda x: np.dot(A.T.conj(), x), 'matmat': lambda x: np.dot(A, x) }] for matvecs in get_matvecs(self.A): A = interface.LinearOperator(**matvecs) assert_(A.args == ()) assert_equal(A.matvec(np.array([1,2,3])), [14,32]) assert_equal(A.matvec(np.array([[1],[2],[3]])), [[14],[32]]) assert_equal(A * np.array([1,2,3]), [14,32]) assert_equal(A * np.array([[1],[2],[3]]), [[14],[32]]) assert_equal(A.dot(np.array([1,2,3])), [14,32]) assert_equal(A.dot(np.array([[1],[2],[3]])), [[14],[32]]) assert_equal(A.matvec(matrix([[1],[2],[3]])), [[14],[32]]) assert_equal(A * matrix([[1],[2],[3]]), [[14],[32]]) assert_equal(A.dot(matrix([[1],[2],[3]])), [[14],[32]]) assert_equal((2*A)*[1,1,1], [12,30]) assert_equal((2 * A).rmatvec([1, 1]), [10, 14, 18]) assert_equal((2*A).H.matvec([1,1]), [10, 14, 18]) assert_equal((2*A)*[[1],[1],[1]], [[12],[30]]) assert_equal((2 * A).matmat([[1], [1], [1]]), [[12], [30]]) assert_equal((A*2)*[1,1,1], [12,30]) assert_equal((A*2)*[[1],[1],[1]], [[12],[30]]) assert_equal((2j*A)*[1,1,1], [12j,30j]) assert_equal((A+A)*[1,1,1], [12, 30]) assert_equal((A + A).rmatvec([1, 1]), [10, 14, 18]) assert_equal((A+A).H.matvec([1,1]), [10, 14, 18]) assert_equal((A+A)*[[1],[1],[1]], [[12], [30]]) assert_equal((A+A).matmat([[1],[1],[1]]), [[12], [30]]) assert_equal((-A)*[1,1,1], [-6,-15]) assert_equal((-A)*[[1],[1],[1]], [[-6],[-15]]) assert_equal((A-A)*[1,1,1], [0,0]) assert_equal((A - A) * [[1], [1], [1]], [[0], [0]]) X = np.array([[1, 2], [3, 4]]) # A_asarray = np.array([[1, 2, 3], [4, 5, 6]]) assert_equal((2 * A).rmatmat(X), np.dot((2 * self.A).T, X)) assert_equal((A * 2).rmatmat(X), np.dot((self.A * 2).T, X)) assert_equal((2j * A).rmatmat(X), np.dot((2j * self.A).T.conj(), X)) assert_equal((A * 2j).rmatmat(X), np.dot((self.A * 2j).T.conj(), X)) assert_equal((A + A).rmatmat(X), np.dot((self.A + self.A).T, X)) assert_equal((A + 2j * A).rmatmat(X), np.dot((self.A + 2j * self.A).T.conj(), X)) assert_equal((-A).rmatmat(X), np.dot((-self.A).T, X)) assert_equal((A - A).rmatmat(X), np.dot((self.A - self.A).T, X)) assert_equal((2j * A).rmatmat(2j * X), np.dot((2j * self.A).T.conj(), 2j * X)) z = A+A assert_(len(z.args) == 2 and z.args[0] is A and z.args[1] is A) z = 2*A assert_(len(z.args) == 2 and z.args[0] is A and z.args[1] == 2) assert_(isinstance(A.matvec([1, 2, 3]), np.ndarray)) assert_(isinstance(A.matvec(np.array([[1],[2],[3]])), np.ndarray)) assert_(isinstance(A * np.array([1,2,3]), np.ndarray)) assert_(isinstance(A * np.array([[1],[2],[3]]), np.ndarray)) assert_(isinstance(A.dot(np.array([1,2,3])), np.ndarray)) assert_(isinstance(A.dot(np.array([[1],[2],[3]])), np.ndarray)) assert_(isinstance(A.matvec(matrix([[1],[2],[3]])), np.ndarray)) assert_(isinstance(A * matrix([[1],[2],[3]]), np.ndarray)) assert_(isinstance(A.dot(matrix([[1],[2],[3]])), np.ndarray)) assert_(isinstance(2*A, interface._ScaledLinearOperator)) assert_(isinstance(2j*A, interface._ScaledLinearOperator)) assert_(isinstance(A+A, interface._SumLinearOperator)) assert_(isinstance(-A, interface._ScaledLinearOperator)) assert_(isinstance(A-A, interface._SumLinearOperator)) assert_((2j*A).dtype == np.complex_) assert_raises(ValueError, A.matvec, np.array([1,2])) assert_raises(ValueError, A.matvec, np.array([1,2,3,4])) assert_raises(ValueError, A.matvec, np.array([[1],[2]])) assert_raises(ValueError, A.matvec, np.array([[1],[2],[3],[4]])) assert_raises(ValueError, lambda: A*A) assert_raises(ValueError, lambda: A**2) for matvecsA, matvecsB in product(get_matvecs(self.A), get_matvecs(self.B)): A = interface.LinearOperator(**matvecsA) B = interface.LinearOperator(**matvecsB) # AtimesB = np.array([[22, 28], [49, 64]]) AtimesB = self.A.dot(self.B) X = np.array([[1, 2], [3, 4]]) assert_equal((A * B).rmatmat(X), np.dot((AtimesB).T, X)) assert_equal((2j * A * B).rmatmat(X), np.dot((2j * AtimesB).T.conj(), X)) assert_equal((A*B)*[1,1], [50,113]) assert_equal((A*B)*[[1],[1]], [[50],[113]]) assert_equal((A*B).matmat([[1],[1]]), [[50],[113]]) assert_equal((A * B).rmatvec([1, 1]), [71, 92]) assert_equal((A * B).H.matvec([1, 1]), [71, 92]) assert_(isinstance(A*B, interface._ProductLinearOperator)) assert_raises(ValueError, lambda: A+B) assert_raises(ValueError, lambda: A**2) z = A*B assert_(len(z.args) == 2 and z.args[0] is A and z.args[1] is B) for matvecsC in get_matvecs(self.C): C = interface.LinearOperator(**matvecsC) X = np.array([[1, 2], [3, 4]]) assert_equal(C.rmatmat(X), np.dot((self.C).T, X)) assert_equal((C**2).rmatmat(X), np.dot((np.dot(self.C, self.C)).T, X)) assert_equal((C**2)*[1,1], [17,37]) assert_equal((C**2).rmatvec([1, 1]), [22, 32]) assert_equal((C**2).H.matvec([1, 1]), [22, 32]) assert_equal((C**2).matmat([[1],[1]]), [[17],[37]]) assert_(isinstance(C**2, interface._PowerLinearOperator)) def test_matmul(self): D = {'shape': self.A.shape, 'matvec': lambda x: np.dot(self.A, x).reshape(self.A.shape[0]), 'rmatvec': lambda x: np.dot(self.A.T.conj(), x).reshape(self.A.shape[1]), 'rmatmat': lambda x: np.dot(self.A.T.conj(), x), 'matmat': lambda x: np.dot(self.A, x)} A = interface.LinearOperator(**D) B = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = B[0] assert_equal(operator.matmul(A, b), A * b) assert_equal(operator.matmul(A, B), A * B) assert_raises(ValueError, operator.matmul, A, 2) assert_raises(ValueError, operator.matmul, 2, A) class TestAsLinearOperator: def setup_method(self): self.cases = [] def make_cases(original, dtype): cases = [] cases.append((matrix(original, dtype=dtype), original)) cases.append((np.array(original, dtype=dtype), original)) cases.append((sparse.csr_matrix(original, dtype=dtype), original)) # Test default implementations of _adjoint and _rmatvec, which # refer to each other. def mv(x, dtype): y = original.dot(x) if len(x.shape) == 2: y = y.reshape(-1, 1) return y def rmv(x, dtype): return original.T.conj().dot(x) class BaseMatlike(interface.LinearOperator): args = () def __init__(self, dtype): self.dtype = np.dtype(dtype) self.shape = original.shape def _matvec(self, x): return mv(x, self.dtype) class HasRmatvec(BaseMatlike): args = () def _rmatvec(self,x): return rmv(x, self.dtype) class HasAdjoint(BaseMatlike): args = () def _adjoint(self): shape = self.shape[1], self.shape[0] matvec = partial(rmv, dtype=self.dtype) rmatvec = partial(mv, dtype=self.dtype) return interface.LinearOperator(matvec=matvec, rmatvec=rmatvec, dtype=self.dtype, shape=shape) class HasRmatmat(HasRmatvec): def _matmat(self, x): return original.dot(x) def _rmatmat(self, x): return original.T.conj().dot(x) cases.append((HasRmatvec(dtype), original)) cases.append((HasAdjoint(dtype), original)) cases.append((HasRmatmat(dtype), original)) return cases original = np.array([[1,2,3], [4,5,6]]) self.cases += make_cases(original, np.int32) self.cases += make_cases(original, np.float32) self.cases += make_cases(original, np.float64) self.cases += [(interface.aslinearoperator(M).T, A.T) for M, A in make_cases(original.T, np.float64)] self.cases += [(interface.aslinearoperator(M).H, A.T.conj()) for M, A in make_cases(original.T, np.float64)] original = np.array([[1, 2j, 3j], [4j, 5j, 6]]) self.cases += make_cases(original, np.complex_) self.cases += [(interface.aslinearoperator(M).T, A.T) for M, A in make_cases(original.T, np.complex_)] self.cases += [(interface.aslinearoperator(M).H, A.T.conj()) for M, A in make_cases(original.T, np.complex_)] def test_basic(self): for M, A_array in self.cases: A = interface.aslinearoperator(M) M,N = A.shape xs = [np.array([1, 2, 3]), np.array([[1], [2], [3]])] ys = [np.array([1, 2]), np.array([[1], [2]])] if A.dtype == np.complex_: xs += [np.array([1, 2j, 3j]), np.array([[1], [2j], [3j]])] ys += [np.array([1, 2j]), np.array([[1], [2j]])] x2 = np.array([[1, 4], [2, 5], [3, 6]]) for x in xs: assert_equal(A.matvec(x), A_array.dot(x)) assert_equal(A * x, A_array.dot(x)) assert_equal(A.matmat(x2), A_array.dot(x2)) assert_equal(A * x2, A_array.dot(x2)) for y in ys: assert_equal(A.rmatvec(y), A_array.T.conj().dot(y)) assert_equal(A.T.matvec(y), A_array.T.dot(y)) assert_equal(A.H.matvec(y), A_array.T.conj().dot(y)) for y in ys: if y.ndim < 2: continue assert_equal(A.rmatmat(y), A_array.T.conj().dot(y)) assert_equal(A.T.matmat(y), A_array.T.dot(y)) assert_equal(A.H.matmat(y), A_array.T.conj().dot(y)) if hasattr(M,'dtype'): assert_equal(A.dtype, M.dtype) assert_(hasattr(A, 'args')) def test_dot(self): for M, A_array in self.cases: A = interface.aslinearoperator(M) M,N = A.shape x0 = np.array([1, 2, 3]) x1 = np.array([[1], [2], [3]]) x2 = np.array([[1, 4], [2, 5], [3, 6]]) assert_equal(A.dot(x0), A_array.dot(x0)) assert_equal(A.dot(x1), A_array.dot(x1)) assert_equal(A.dot(x2), A_array.dot(x2)) def test_repr(): A = interface.LinearOperator(shape=(1, 1), matvec=lambda x: 1) repr_A = repr(A) assert_('unspecified dtype' not in repr_A, repr_A) def test_identity(): ident = interface.IdentityOperator((3, 3)) assert_equal(ident * [1, 2, 3], [1, 2, 3]) assert_equal(ident.dot(np.arange(9).reshape(3, 3)).ravel(), np.arange(9)) assert_raises(ValueError, ident.matvec, [1, 2, 3, 4]) def test_attributes(): A = interface.aslinearoperator(np.arange(16).reshape(4, 4)) def always_four_ones(x): x = np.asarray(x) assert_(x.shape == (3,) or x.shape == (3, 1)) return np.ones(4) B = interface.LinearOperator(shape=(4, 3), matvec=always_four_ones) for op in [A, B, A * B, A.H, A + A, B + B, A**4]: assert_(hasattr(op, "dtype")) assert_(hasattr(op, "shape")) assert_(hasattr(op, "_matvec")) def matvec(x): """ Needed for test_pickle as local functions are not pickleable """ return np.zeros(3) def test_pickle(): import pickle for protocol in range(pickle.HIGHEST_PROTOCOL + 1): A = interface.LinearOperator((3, 3), matvec) s = pickle.dumps(A, protocol=protocol) B = pickle.loads(s) for k in A.__dict__: assert_equal(getattr(A, k), getattr(B, k)) def test_inheritance(): class Empty(interface.LinearOperator): pass with warns(RuntimeWarning, match="should implement at least"): assert_raises(TypeError, Empty) class Identity(interface.LinearOperator): def __init__(self, n): super().__init__(dtype=None, shape=(n, n)) def _matvec(self, x): return x id3 = Identity(3) assert_equal(id3.matvec([1, 2, 3]), [1, 2, 3]) assert_raises(NotImplementedError, id3.rmatvec, [4, 5, 6]) class MatmatOnly(interface.LinearOperator): def __init__(self, A): super().__init__(A.dtype, A.shape) self.A = A def _matmat(self, x): return self.A.dot(x) mm = MatmatOnly(np.random.randn(5, 3)) assert_equal(mm.matvec(np.random.randn(3)).shape, (5,)) def test_dtypes_of_operator_sum(): # gh-6078 mat_complex = np.random.rand(2,2) + 1j * np.random.rand(2,2) mat_real = np.random.rand(2,2) complex_operator = interface.aslinearoperator(mat_complex) real_operator = interface.aslinearoperator(mat_real) sum_complex = complex_operator + complex_operator sum_real = real_operator + real_operator assert_equal(sum_real.dtype, np.float64) assert_equal(sum_complex.dtype, np.complex128) def test_no_double_init(): call_count = [0] def matvec(v): call_count[0] += 1 return v # It should call matvec exactly once (in order to determine the # operator dtype) interface.LinearOperator((2, 2), matvec=matvec) assert_equal(call_count[0], 1) def test_adjoint_conjugate(): X = np.array([[1j]]) A = interface.aslinearoperator(X) B = 1j * A Y = 1j * X v = np.array([1]) assert_equal(B.dot(v), Y.dot(v)) assert_equal(B.H.dot(v), Y.T.conj().dot(v)) def test_ndim(): X = np.array([[1]]) A = interface.aslinearoperator(X) assert_equal(A.ndim, 2) def test_transpose_noconjugate(): X = np.array([[1j]]) A = interface.aslinearoperator(X) B = 1j * A Y = 1j * X v = np.array([1]) assert_equal(B.dot(v), Y.dot(v)) assert_equal(B.T.dot(v), Y.T.dot(v))