"""Test functions for the sparse.linalg.norm module """ import numpy as np from numpy.linalg import norm as npnorm from numpy.testing import assert_allclose from pytest import raises as assert_raises import scipy.sparse from scipy.sparse.linalg import norm as spnorm class TestNorm: def setup_method(self): a = np.arange(9) - 4 b = a.reshape((3, 3)) self.b = scipy.sparse.csr_matrix(b) def test_matrix_norm(self): # Frobenius norm is the default assert_allclose(spnorm(self.b), 7.745966692414834) assert_allclose(spnorm(self.b, 'fro'), 7.745966692414834) assert_allclose(spnorm(self.b, np.inf), 9) assert_allclose(spnorm(self.b, -np.inf), 2) assert_allclose(spnorm(self.b, 1), 7) assert_allclose(spnorm(self.b, -1), 6) # _multi_svd_norm is not implemented for sparse matrix assert_raises(NotImplementedError, spnorm, self.b, 2) assert_raises(NotImplementedError, spnorm, self.b, -2) def test_matrix_norm_axis(self): for m, axis in ((self.b, None), (self.b, (0, 1)), (self.b.T, (1, 0))): assert_allclose(spnorm(m, axis=axis), 7.745966692414834) assert_allclose(spnorm(m, 'fro', axis=axis), 7.745966692414834) assert_allclose(spnorm(m, np.inf, axis=axis), 9) assert_allclose(spnorm(m, -np.inf, axis=axis), 2) assert_allclose(spnorm(m, 1, axis=axis), 7) assert_allclose(spnorm(m, -1, axis=axis), 6) def test_vector_norm(self): v = [4.5825756949558398, 4.2426406871192848, 4.5825756949558398] for m, a in (self.b, 0), (self.b.T, 1): for axis in a, (a, ), a-2, (a-2, ): assert_allclose(spnorm(m, 1, axis=axis), [7, 6, 7]) assert_allclose(spnorm(m, np.inf, axis=axis), [4, 3, 4]) assert_allclose(spnorm(m, axis=axis), v) assert_allclose(spnorm(m, ord=2, axis=axis), v) assert_allclose(spnorm(m, ord=None, axis=axis), v) def test_norm_exceptions(self): m = self.b assert_raises(TypeError, spnorm, m, None, 1.5) assert_raises(TypeError, spnorm, m, None, [2]) assert_raises(ValueError, spnorm, m, None, ()) assert_raises(ValueError, spnorm, m, None, (0, 1, 2)) assert_raises(ValueError, spnorm, m, None, (0, 0)) assert_raises(ValueError, spnorm, m, None, (0, 2)) assert_raises(ValueError, spnorm, m, None, (-3, 0)) assert_raises(ValueError, spnorm, m, None, 2) assert_raises(ValueError, spnorm, m, None, -3) assert_raises(ValueError, spnorm, m, 'plate_of_shrimp', 0) assert_raises(ValueError, spnorm, m, 'plate_of_shrimp', (0, 1)) class TestVsNumpyNorm: _sparse_types = ( scipy.sparse.bsr_matrix, scipy.sparse.coo_matrix, scipy.sparse.csc_matrix, scipy.sparse.csr_matrix, scipy.sparse.dia_matrix, scipy.sparse.dok_matrix, scipy.sparse.lil_matrix, ) _test_matrices = ( (np.arange(9) - 4).reshape((3, 3)), [ [1, 2, 3], [-1, 1, 4]], [ [1, 0, 3], [-1, 1, 4j]], ) def test_sparse_matrix_norms(self): for sparse_type in self._sparse_types: for M in self._test_matrices: S = sparse_type(M) assert_allclose(spnorm(S), npnorm(M)) assert_allclose(spnorm(S, 'fro'), npnorm(M, 'fro')) assert_allclose(spnorm(S, np.inf), npnorm(M, np.inf)) assert_allclose(spnorm(S, -np.inf), npnorm(M, -np.inf)) assert_allclose(spnorm(S, 1), npnorm(M, 1)) assert_allclose(spnorm(S, -1), npnorm(M, -1)) def test_sparse_matrix_norms_with_axis(self): for sparse_type in self._sparse_types: for M in self._test_matrices: S = sparse_type(M) for axis in None, (0, 1), (1, 0): assert_allclose(spnorm(S, axis=axis), npnorm(M, axis=axis)) for ord in 'fro', np.inf, -np.inf, 1, -1: assert_allclose(spnorm(S, ord, axis=axis), npnorm(M, ord, axis=axis)) # Some numpy matrix norms are allergic to negative axes. for axis in (-2, -1), (-1, -2), (1, -2): assert_allclose(spnorm(S, axis=axis), npnorm(M, axis=axis)) assert_allclose(spnorm(S, 'f', axis=axis), npnorm(M, 'f', axis=axis)) assert_allclose(spnorm(S, 'fro', axis=axis), npnorm(M, 'fro', axis=axis)) def test_sparse_vector_norms(self): for sparse_type in self._sparse_types: for M in self._test_matrices: S = sparse_type(M) for axis in (0, 1, -1, -2, (0, ), (1, ), (-1, ), (-2, )): assert_allclose(spnorm(S, axis=axis), npnorm(M, axis=axis)) for ord in None, 2, np.inf, -np.inf, 1, 0.5, 0.42: assert_allclose(spnorm(S, ord, axis=axis), npnorm(M, ord, axis=axis))